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Learn to crunch 
big data with R
Get started using the open source R programming language to do 
statistical computing and graphics on large data sets
BY Martin Heller

A few years ago I was the CTO and co-founder of a startup in 

the medical practice management software space. One of the 

problems we were trying to solve was how medical office visit 

schedules can optimize everyone’s time. Too often, office visits are 

scheduled to optimize the physician’s time, and patients have to 

wait way too long in overcrowded waiting rooms in the company 

of people coughing contagious diseases out their lungs. >>
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One of my co-founders, a hospital medical 

director, had a multivariate linear model that 

could predict the required length for an office 

visit based on the reason for the visit, whether 

the patient needs a translator, the average 

historical visit lengths of both doctor and patient, 

and other possibly relevant factors. One of the 

subsystems I needed to build was a monthly 

regression task to update all of the coefficients in 

the model based on historical data. 

After exploring many options, I chose to 

implement this piece in R, taking advantage of 

the wide variety of statistical (linear and nonlinear 

modeling, classical statistical tests, time-series 

analysis, classification, clustering) and graphical 

techniques implemented in the R system. 

One of the attractions for me was the R 

scripting language, which makes it easy to save 

and rerun analyses on updated data sets; another 

attraction was the ability to integrate R and C++. 

A key benefit for this project was the fact that R, 

unlike Excel and other GUI analysis programs, is 

completely auditable. 

Alas, that startup ran out of money not long 

after I implemented a proof-of-concept Web 

application, at least partially because our first 

hospital customer had to declare Chapter 7 

bankruptcy. Nevertheless, I continue to favor R 

for statistical analysis and data science. 

Essential R scripting
Sharon Machlis of Computerworld wrote an 

excellent set of beginner tutorials on R for busi-

ness intelligence in 2013. It would be silly for me 

to reinvent those six articles here, so feel free to 

go read them and come back. The TL;DR version 

is as follows. 

Start by installing R and RStudio on your 

desktop. Both are free. RStudio is optional, but I 

like it, and you probably will, too. There are a half-

dozen other R IDEs and a dozen editors with some 

R support, but don’t go crazy trying them all. 

Try running R from a command shell (Figure 

1), the R Console (Figure 2), and RStudio (Figure 

3). Familiarize yourself with some of the R tuto-

rials and demos. 
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Figure 1. 
R running in a Bash 
shell, using the 
supplied glm.vr linear 
regression demo. 

http://www.computerworld.com/article/2497143/business-intelligence-beginner-s-guide-to-r-introduction.html
http://www.computerworld.com/article/2497143/business-intelligence-beginner-s-guide-to-r-introduction.html
http://www.computerworld.com/article/2497143/business-intelligence-beginner-s-guide-to-r-introduction.html
http://www.r-project.org/
http://www.rstudio.com/ide/
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Figure 2. 
The R Console, 
a floating list of 
R demos, and a 
Quartz graphics 
window. The R 
graphics demo 
is running. Note 
that <- is the 
normal assign-
ment operator. 

A key benefit for 
this project was 
the fact that R, 
unlike Excel  
and other GUI 
analysis programs, 
is completely 
auditable

p
h

o
t

o
 c

o
l

l
a

g
e

 b
y

 T
e

r
r

i 
h

a
a

s
/s

h
u

t
t

e
r

s
t

o
c

k



Deep Dive

5

The power of R is illustrated by the decep-

tively simple calls in Figure 3 to do statistical 

analysis. For example, 

fm1 <- lm(y ~ x, data=dummy, 

weight=1/w^2) 

summary(fm1)  

This says “find the best fit coefficients, fitted 

values, and residuals for a linear model where y 

varies with x for the supplied data and weight 

vectors. Save them in object fm1 and then 

summarize the results.” Earlier in this session we 

had defined the following: 

w <- 1 + sqrt(x) / 2 

Reading this code is straightforward. Writing 

it takes a little study. But it isn’t hard and there’s 

lots of free help available, not to mention dozens 

of books. 

In addition to the R help available on the 

Web and from the Help menu items in the R 

Console and RStudio, you can get help from the 

R command line. For example: 

?functionName 

help(functionName) 

example(functionName) 

args(functionName) 

help.search(“your search term”) 

??(“my search term”) 

To get data into R, either use its sample data, 

listed by the data() function, or load it from a 

file: 

mydata <- read.csv(“filename.txt”)

 

R is extremely extensible. The library() 

and require() functions load and attach 

add-on packages; require() is designed for 

use inside other functions. Many add-on pack-

ages and the R distributions live in CRAN, the 

worldwide Comprehensive R Archive Network. 

The other two common R archives are Omegahat 

and Bioconductor. Additional packages live in 

R-Forge. 
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Figure 3. 
RStudio has four 
windows (all but 
the editor are 
shown here) and 
multiple tabs in 
each window. 
Sample code 
from the R site is 
running. Notice 
the data display 
in the upper 
right, which is 
quite convenient.  
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The R installation copies the base pack-

ages and the recommended packages from 

CRAN into a local library directory, which on 

a Mac is currently at /Library/Frameworks/R.

framework/Versions/3.1/Resources/library/. 

Running the R library() command without 

any arguments will list the local packages and 

the library location. RStudio will also generate 

the correct library() command to install a 

listed package when you check the installation 

check mark in the Packages tab. The command 

help(package = packageName) will 

display the functions in the specified package. 

There are R packages and functions to load 

data from any reasonable source, not only CSV 

files. Beyond the obvious case of delimiters other 

than commas, which are handled using the 

read.table() function, you can copy and 

paste data tables, read Excel files, connect Excel 

to R, bring in SAS and SPSS data, and access 

databases, Salesforce, and RESTful interfaces. 

See, for example, the foreign package. 

You don’t really need to learn the syntax 

for standard data imports, as the RStudio 

Tools|Import Dataset menu item will help 

you generate the correct commands interactively 

by looking at the data from a text file or URL and 

setting the correct conversion options in drop-

down lists based on what you see. 

You can see a list of the currently available 

packages by name on CRAN; this list is much 

more extensive than the list of recommended 

packages downloaded to your desktop by default. 

To install a package from one of the default 

archives, use the install.packages function: 

install.packages(“ggplot2”) 

Note that ggplot2 is a popular advanced 

graphics package that has more options than 

the standard graphics package. Neverthe-

less, graphics can do a lot. In addition to the 

graphics in Figures 2 and 3, consider Figures 4 

and 5. 

Figure 4. 
Edgar Anderson’s 
Iris data is a stock 
R data set, and this 
set of scatterplots 
was produced by 
the graphics 
demo.

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html
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When R 
programmers 
talk about “big 
data,” they don’t 
necessarily 
mean data that 
goes through 
Hadoop. They 
generally use 
“big” to mean 
data that can’t 
be analyzed in 
memory. 
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R can do much more in terms of graphics 

and statistical analysis. Do read Sharon Machlis’s 

tutorial and follow up with her links to additional 

information. At this point, I want to expand my 

discussion to how you can analyze big data in R. 

R in the cloud
When R programmers talk about “big data,” 

they don’t necessarily mean data that goes 

through Hadoop. They generally use “big” to 

mean data that can’t be analyzed in memory. 

The fact is you can easily get 16GB of RAM 

in a desktop or laptop computer. R running in 

16GB of RAM can analyze millions of rows of 

data with no problem. Times have changed quite 

a bit since the days when a database table with a 

million rows was considered big. 

One of the first steps many developers take 

when their program needs more RAM is to run 

it on a bigger machine. You can run R on a 

server; a common 4U Intel server can hold up to 

2TB of RAM. Of course, hogging an entire 2TB 

server for one personal R instance might be a bit 

wasteful. So people run large cloud instances 

for as long as they need them, run VMs on their 

server hardware, or run the likes of RStudio 

Server on their server hardware. 

RStudio Server comes in Free and Pro 

editions. Both have the same features for indi-

vidual analysts, but the Pro version offers more 

in the way of scale: authorization and security, 

management visibility, performance tuning, 

support, and a commercial license. According to 

Roger Oberg of RStudio, the company’s intent is 

not to create paid-only features for individuals. 

RStudio Server Pro is integrated with several 

big data systems. For example, when I was 

reviewing the IBM Bluemix PaaS, I noticed 

that R and RStudio are part of IBM’s DashDB 

service (Figure 6). In fact, this is an installation 

of RStudio Server Pro on Bluemix and SoftLayer, 

according to Oberg and Tareef Kawaf of RStudio. 

Figure 5. 
This topographic map 
of Maunga Whau 
was produced from 
stock data and the 
graphics demo.)

http://www.computerworld.com/article/2497143/business-intelligence-beginner-s-guide-to-r-introduction.html
http://www.computerworld.com/article/2497143/business-intelligence-beginner-s-guide-to-r-introduction.html
http://www.computerworld.com/article/2497464/business-intelligence-60-r-resources-to-improve-your-data-skills.html
http://www.computerworld.com/article/2497464/business-intelligence-60-r-resources-to-improve-your-data-skills.html
http://www.infoworld.com/article/2872330/cloud-computing/review-ibm-bluemix-bulks-up-cloud-foundry.html
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There is an additional strategy for running R 

against big data: Bring down only the data that 

you need to analyze. In the spirit of MapReduce, 

Hadoop, Spark, and Storm, you want to winnow 

the data as you stream it to make in-memory 

analysis tractable on the reduced data set. To use 

Kawaf’s example, you may have 100TB of data 

but need “only” 5 columns and 20 million rows, 

a mere few hundred megabytes of reduced data. 

You may also want to perform some of 

the analysis in the database instead of in the 

app. IBM has done a good job of providing an 

example, along with the R source code. Consider 

the analysis shown in Figure 7. 

Figure 6. IBM 
Bluemix documenta-
tion touts the ability 
to run R scripts 
against a DashDB 
in-memory database. 
graphics demo.)

Figure 7. We are 
looking at RStudio 
Server Pro running 
in an IBM Bluemix 
dashDB service. The 
sample we ran did 
a regression from 
a large dataset 
in-database. 
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Streaming the data out of the database and 

into R can take a significant amount of time. If 

you eliminate most of the network streaming, 

you can vastly reduce the time needed for the 

analysis. You’ll notice that the timing for the 

in-database regression analysis is 2.7 seconds. 

The same task with the regression done in-appli-

cation took 1.47 minutes—more than 30 times 

longer. The regression coefficients computed 

were exactly the same. All that changed was that 

one analysis did the regression where the data 

resided, and the other first streamed the data 

from the database to the R application. 

The IBM implementation is not unique; I 

happened to have a Bluemix account. Vertica 

(HP), Greenplum (Pivotal), Oracle, and Teradata 

all have R packages. I’m not sure how far the 

others have gone in the direction of in-database 

analytics, however. 

By the way, I was pleasantly surprised 

to find that running RStudio Server Pro in a 

browser feels exactly like running RStudio on my 

desktop—nicely done. 

Shiny and R Markdown
Of course, developers and analysts never really 

get away with simply writing the code and 

determining the results. Top management wants 

monthly reports, and middle management wants 

to play with the data without knowing anything 

about what’s under the covers. Enter shiny and 

rmarkdown, two R packages from RStudio for 

Web applications and reporting, respectively. 

Figure 8 shows a simple Shiny app running in 

RStudio. The code is from Lesson 2 of the Shiny 

tutorial. 

Figure 8. 
We’re seeing a Web page running a Shiny app, next to 
the RStudio editor showing the UI code for the app. The 
Shiny functions generate HTML. For example, h1(“My 
title”) generates <h1>My title</h1>. 

http://shiny.rstudio.com/tutorial/lesson2/
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To limit what 
is recomputed 
when input 
changes, 
the reactive 
wrapper func-
tion caches 
its values and 
recomputes 
only those that 
are invalid.

You can use Shiny to build interactive and 

“reactive” Web apps, with widgets that corre-

spond to HTML control elements such as input 

fields. By “reactive,” RStudio means that when 

a value changes, all values with dependencies 

on the changed value are recalculated, as you’d 

expect from a spreadsheet program. Figure 9 

shows an interactive Shiny app with two widgets 

for input and a shaded choropleth map of U.S. 

census data for output.

The interactive Shiny app in Figure 9 is a 

good example of how you can allow middle 

management to play with the data without their 

having to know what’s under the covers. 

To limit what is recomputed when input 

changes, the reactive wrapper function caches 

its values and recomputes only those that are 

invalid. I’ll forgo burdening you with an example, 

although you’ll find one in Shiny Lesson 6. Shiny 

apps can run on your own hardware, or you can 

publish them to the shinyapps.io server. For a 

quick example, have a look at Figure 10. 

Figure 9. 
The U.S. map rendered in the example above changes when the user varies the input values. Note the 
readRDS base function to read a serialized R object, the source function to include additional 
code, the renderPlot function (from the shiny package) to render a reactive plot, and the 
do.call base function to construct and execute a function call. The percent_map function is 
defined in helpers.R to render the shaded county map and the state outline map.

http://shiny.rstudio.com/tutorial/lesson6/
http://www.shinyapps.io/
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With the  
addition of 
RStudio as an 
IDE, developing 
R applications 
can be quite 
productive.

Figure 10. The interactive Shiny demo 
app running on my local system. You 
can run it yourself at https://mheller.
shinyapps.io/shinyapp-demo/. 

Shiny apps should satisfy the needs of middle 

managers. Now what about top management? 

If you are a GitHub user or have simply been 

paying attention to the Web and developer land-

scapes the last 10 years, you’ll know about the 

Markdown language for generating formatted 

documents in HTML and other tag-based markup 

languages. RStudio includes a Markdown imple-

mentation and extends it to include embedded 

R code chunks and both LaTeX and MathML in 

the R Markdown package. You can also create 

interactive R Markdown documents using Shiny 

and publish them to your own Shiny server or to 

shinyapps.io. For an example, see Figure 11. 

https://mheller.shinyapps.io/shinyapp-demo/
https://mheller.shinyapps.io/shinyapp-demo/
https://en.wikipedia.org/wiki/Markdown
http://rmarkdown.rstudio.com/
http://www.shinyapps.io/
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The power of R
As we’ve seen, R is a useful tool for data scientists and 

statisticians, and its somewhat nonstandard scripting 

language will be of interest to programmers who might 

otherwise resort to Python (with NumPy, Pandas, and 

StatsModels); SQL (for data held in a database); or SAS 

(and its GUI derivative, JMP) for their data analysis. 

Compared to Excel, R has considerably more statistical 

and graphing power, especially if you add packages for 

your particular needs, and it’s much more auditable. It’s 

far easier to validate an R script than a spreadsheet full 

of formulas. 

With the addition of RStudio as an IDE, developing 

R applications can be quite productive. RStudio Server 

allows companies to take advantage of the huge RAM 

and many processors available in big server hardware, 

Shiny turns R into a Web application server, and R 

Markdown allows you to use R for reports. 

On the other hand, the great power of R and the 

large number of R packages available can make for a 

fairly intimidating learning curve. It helps a lot to have 

some statistics background when learning and using R, 

but that’s true for all data science. As can be said for any 

other programming language with many libraries avail-

able, your best strategy for learning R is to take it one 

step at a time. n 

Martin Heller is a contributing editor for InfoWorld 

reviews.

Figure 11. 
An example of R 
Markdown made 
interactive. The 
underlying code is a 
header block, a few 
lines of Markdown, 
and a dozen lines of 
R. See Figure 12.

Figure 12. 
The faithful$eruptions data 
used in this example is 
from the Old Faithful 
geyser data built into the R 
Datasets package. 


