
Copyright © 2015 InfoWorld Media Group. All rights reserved. • $79

DeepDive
p

h
o

t
o

 c
o

l
l

a
g

e
 b

y
 T

e
r

r
i

h
a

a
s

/s
h

u
t

t
e

r
s

t
o

c
k

Learn to crunch

big data

<R>(with)

Deep Dive

InfoWorld.com deep dive series 2b i g data w it h R

Deep Dive

2InfoWorld.com deep dive series C r u n c h b i g data w it h R

Learn to crunch
big data with R
Get started using the open source R programming language to do
statistical computing and graphics on large data sets
BY Martin Heller

A few years ago I was the CTO and co-founder of a startup in

the medical practice management software space. One of the

problems we were trying to solve was how medical office visit

schedules can optimize everyone’s time. Too often, office visits are

scheduled to optimize the physician’s time, and patients have to

wait way too long in overcrowded waiting rooms in the company

of people coughing contagious diseases out their lungs. >>

p
h

o
t

o
 c

o
l

l
a

g
e

 b
y

 T
e

r
r

i
h

a
a

s
/s

h
u

t
t

e
r

s
t

o
c

k

Deep Dive

InfoWorld.com deep dive series 3PAA S

One of my co-founders, a hospital medical

director, had a multivariate linear model that

could predict the required length for an office

visit based on the reason for the visit, whether

the patient needs a translator, the average

historical visit lengths of both doctor and patient,

and other possibly relevant factors. One of the

subsystems I needed to build was a monthly

regression task to update all of the coefficients in

the model based on historical data.

After exploring many options, I chose to

implement this piece in R, taking advantage of

the wide variety of statistical (linear and nonlinear

modeling, classical statistical tests, time-series

analysis, classification, clustering) and graphical

techniques implemented in the R system.

One of the attractions for me was the R

scripting language, which makes it easy to save

and rerun analyses on updated data sets; another

attraction was the ability to integrate R and C++.

A key benefit for this project was the fact that R,

unlike Excel and other GUI analysis programs, is

completely auditable.

Alas, that startup ran out of money not long

after I implemented a proof-of-concept Web

application, at least partially because our first

hospital customer had to declare Chapter 7

bankruptcy. Nevertheless, I continue to favor R

for statistical analysis and data science.

Essential R scripting
Sharon Machlis of Computerworld wrote an

excellent set of beginner tutorials on R for busi-

ness intelligence in 2013. It would be silly for me

to reinvent those six articles here, so feel free to

go read them and come back. The TL;DR version

is as follows.

Start by installing R and RStudio on your

desktop. Both are free. RStudio is optional, but I

like it, and you probably will, too. There are a half-

dozen other R IDEs and a dozen editors with some

R support, but don’t go crazy trying them all.

Try running R from a command shell (Figure

1), the R Console (Figure 2), and RStudio (Figure

3). Familiarize yourself with some of the R tuto-

rials and demos.

Deep Dive

C r u n c h b i g data w it h R InfoWorld.com deep dive series 3

Figure 1.
R running in a Bash
shell, using the
supplied glm.vr linear
regression demo.

http://www.computerworld.com/article/2497143/business-intelligence-beginner-s-guide-to-r-introduction.html
http://www.computerworld.com/article/2497143/business-intelligence-beginner-s-guide-to-r-introduction.html
http://www.computerworld.com/article/2497143/business-intelligence-beginner-s-guide-to-r-introduction.html
http://www.r-project.org/
http://www.rstudio.com/ide/

Deep Dive

4C r u n c h b i g data w it h R InfoWorld.com deep dive series

Figure 2.
The R Console,
a floating list of
R demos, and a
Quartz graphics
window. The R
graphics demo
is running. Note
that <- is the
normal assign-
ment operator.

A key benefit for
this project was
the fact that R,
unlike Excel
and other GUI
analysis programs,
is completely
auditable

p
h

o
t

o
 c

o
l

l
a

g
e

 b
y

 T
e

r
r

i
h

a
a

s
/s

h
u

t
t

e
r

s
t

o
c

k

Deep Dive

5

The power of R is illustrated by the decep-

tively simple calls in Figure 3 to do statistical

analysis. For example,

fm1 <- lm(y ~ x, data=dummy,

weight=1/w^2)

summary(fm1)

This says “find the best fit coefficients, fitted

values, and residuals for a linear model where y

varies with x for the supplied data and weight

vectors. Save them in object fm1 and then

summarize the results.” Earlier in this session we

had defined the following:

w <- 1 + sqrt(x) / 2

Reading this code is straightforward. Writing

it takes a little study. But it isn’t hard and there’s

lots of free help available, not to mention dozens

of books.

In addition to the R help available on the

Web and from the Help menu items in the R

Console and RStudio, you can get help from the

R command line. For example:

?functionName

help(functionName)

example(functionName)

args(functionName)

help.search(“your search term”)

??(“my search term”)

To get data into R, either use its sample data,

listed by the data() function, or load it from a

file:

mydata <- read.csv(“filename.txt”)

R is extremely extensible. The library()

and require() functions load and attach

add-on packages; require() is designed for

use inside other functions. Many add-on pack-

ages and the R distributions live in CRAN, the

worldwide Comprehensive R Archive Network.

The other two common R archives are Omegahat

and Bioconductor. Additional packages live in

R-Forge.

C r u n c h b i g data w it h R InfoWorld.com deep dive series

Figure 3.
RStudio has four
windows (all but
the editor are
shown here) and
multiple tabs in
each window.
Sample code
from the R site is
running. Notice
the data display
in the upper
right, which is
quite convenient.

Deep Dive

InfoWorld.com deep dive series 6C r u n c h b i g data w it h R

The R installation copies the base pack-

ages and the recommended packages from

CRAN into a local library directory, which on

a Mac is currently at /Library/Frameworks/R.

framework/Versions/3.1/Resources/library/.

Running the R library() command without

any arguments will list the local packages and

the library location. RStudio will also generate

the correct library() command to install a

listed package when you check the installation

check mark in the Packages tab. The command

help(package = packageName) will

display the functions in the specified package.

There are R packages and functions to load

data from any reasonable source, not only CSV

files. Beyond the obvious case of delimiters other

than commas, which are handled using the

read.table() function, you can copy and

paste data tables, read Excel files, connect Excel

to R, bring in SAS and SPSS data, and access

databases, Salesforce, and RESTful interfaces.

See, for example, the foreign package.

You don’t really need to learn the syntax

for standard data imports, as the RStudio

Tools|Import Dataset menu item will help

you generate the correct commands interactively

by looking at the data from a text file or URL and

setting the correct conversion options in drop-

down lists based on what you see.

You can see a list of the currently available

packages by name on CRAN; this list is much

more extensive than the list of recommended

packages downloaded to your desktop by default.

To install a package from one of the default

archives, use the install.packages function:

install.packages(“ggplot2”)

Note that ggplot2 is a popular advanced

graphics package that has more options than

the standard graphics package. Neverthe-

less, graphics can do a lot. In addition to the

graphics in Figures 2 and 3, consider Figures 4

and 5.

Figure 4.
Edgar Anderson’s
Iris data is a stock
R data set, and this
set of scatterplots
was produced by
the graphics
demo.

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html

Deep Dive

InfoWorld.com deep dive series 7

When R
programmers
talk about “big
data,” they don’t
necessarily
mean data that
goes through
Hadoop. They
generally use
“big” to mean
data that can’t
be analyzed in
memory.

C r u n c h b i g data w it h R

R can do much more in terms of graphics

and statistical analysis. Do read Sharon Machlis’s

tutorial and follow up with her links to additional

information. At this point, I want to expand my

discussion to how you can analyze big data in R.

R in the cloud
When R programmers talk about “big data,”

they don’t necessarily mean data that goes

through Hadoop. They generally use “big” to

mean data that can’t be analyzed in memory.

The fact is you can easily get 16GB of RAM

in a desktop or laptop computer. R running in

16GB of RAM can analyze millions of rows of

data with no problem. Times have changed quite

a bit since the days when a database table with a

million rows was considered big.

One of the first steps many developers take

when their program needs more RAM is to run

it on a bigger machine. You can run R on a

server; a common 4U Intel server can hold up to

2TB of RAM. Of course, hogging an entire 2TB

server for one personal R instance might be a bit

wasteful. So people run large cloud instances

for as long as they need them, run VMs on their

server hardware, or run the likes of RStudio

Server on their server hardware.

RStudio Server comes in Free and Pro

editions. Both have the same features for indi-

vidual analysts, but the Pro version offers more

in the way of scale: authorization and security,

management visibility, performance tuning,

support, and a commercial license. According to

Roger Oberg of RStudio, the company’s intent is

not to create paid-only features for individuals.

RStudio Server Pro is integrated with several

big data systems. For example, when I was

reviewing the IBM Bluemix PaaS, I noticed

that R and RStudio are part of IBM’s DashDB

service (Figure 6). In fact, this is an installation

of RStudio Server Pro on Bluemix and SoftLayer,

according to Oberg and Tareef Kawaf of RStudio.

Figure 5.
This topographic map
of Maunga Whau
was produced from
stock data and the
graphics demo.)

http://www.computerworld.com/article/2497143/business-intelligence-beginner-s-guide-to-r-introduction.html
http://www.computerworld.com/article/2497143/business-intelligence-beginner-s-guide-to-r-introduction.html
http://www.computerworld.com/article/2497464/business-intelligence-60-r-resources-to-improve-your-data-skills.html
http://www.computerworld.com/article/2497464/business-intelligence-60-r-resources-to-improve-your-data-skills.html
http://www.infoworld.com/article/2872330/cloud-computing/review-ibm-bluemix-bulks-up-cloud-foundry.html

Deep Dive

InfoWorld.com deep dive series 8C r u n c h b i g data w it h R

There is an additional strategy for running R

against big data: Bring down only the data that

you need to analyze. In the spirit of MapReduce,

Hadoop, Spark, and Storm, you want to winnow

the data as you stream it to make in-memory

analysis tractable on the reduced data set. To use

Kawaf’s example, you may have 100TB of data

but need “only” 5 columns and 20 million rows,

a mere few hundred megabytes of reduced data.

You may also want to perform some of

the analysis in the database instead of in the

app. IBM has done a good job of providing an

example, along with the R source code. Consider

the analysis shown in Figure 7.

Figure 6. IBM
Bluemix documenta-
tion touts the ability
to run R scripts
against a DashDB
in-memory database.
graphics demo.)

Figure 7. We are
looking at RStudio
Server Pro running
in an IBM Bluemix
dashDB service. The
sample we ran did
a regression from
a large dataset
in-database.

Deep Dive

InfoWorld.com deep dive series 9C r u n c h b i g data w it h R

Streaming the data out of the database and

into R can take a significant amount of time. If

you eliminate most of the network streaming,

you can vastly reduce the time needed for the

analysis. You’ll notice that the timing for the

in-database regression analysis is 2.7 seconds.

The same task with the regression done in-appli-

cation took 1.47 minutes—more than 30 times

longer. The regression coefficients computed

were exactly the same. All that changed was that

one analysis did the regression where the data

resided, and the other first streamed the data

from the database to the R application.

The IBM implementation is not unique; I

happened to have a Bluemix account. Vertica

(HP), Greenplum (Pivotal), Oracle, and Teradata

all have R packages. I’m not sure how far the

others have gone in the direction of in-database

analytics, however.

By the way, I was pleasantly surprised

to find that running RStudio Server Pro in a

browser feels exactly like running RStudio on my

desktop—nicely done.

Shiny and R Markdown
Of course, developers and analysts never really

get away with simply writing the code and

determining the results. Top management wants

monthly reports, and middle management wants

to play with the data without knowing anything

about what’s under the covers. Enter shiny and

rmarkdown, two R packages from RStudio for

Web applications and reporting, respectively.

Figure 8 shows a simple Shiny app running in

RStudio. The code is from Lesson 2 of the Shiny

tutorial.

Figure 8.
We’re seeing a Web page running a Shiny app, next to
the RStudio editor showing the UI code for the app. The
Shiny functions generate HTML. For example, h1(“My
title”) generates <h1>My title</h1>.

http://shiny.rstudio.com/tutorial/lesson2/

Deep Dive

InfoWorld.com deep dive series 1 0C r u n c h b i g data w it h R

To limit what
is recomputed
when input
changes,
the reactive
wrapper func-
tion caches
its values and
recomputes
only those that
are invalid.

You can use Shiny to build interactive and

“reactive” Web apps, with widgets that corre-

spond to HTML control elements such as input

fields. By “reactive,” RStudio means that when

a value changes, all values with dependencies

on the changed value are recalculated, as you’d

expect from a spreadsheet program. Figure 9

shows an interactive Shiny app with two widgets

for input and a shaded choropleth map of U.S.

census data for output.

The interactive Shiny app in Figure 9 is a

good example of how you can allow middle

management to play with the data without their

having to know what’s under the covers.

To limit what is recomputed when input

changes, the reactive wrapper function caches

its values and recomputes only those that are

invalid. I’ll forgo burdening you with an example,

although you’ll find one in Shiny Lesson 6. Shiny

apps can run on your own hardware, or you can

publish them to the shinyapps.io server. For a

quick example, have a look at Figure 10.

Figure 9.
The U.S. map rendered in the example above changes when the user varies the input values. Note the
readRDS base function to read a serialized R object, the source function to include additional
code, the renderPlot function (from the shiny package) to render a reactive plot, and the
do.call base function to construct and execute a function call. The percent_map function is
defined in helpers.R to render the shaded county map and the state outline map.

http://shiny.rstudio.com/tutorial/lesson6/
http://www.shinyapps.io/

Deep Dive

InfoWorld.com deep dive series 1 1C r u n c h b i g data w it h R

With the
addition of
RStudio as an
IDE, developing
R applications
can be quite
productive.

Figure 10. The interactive Shiny demo
app running on my local system. You
can run it yourself at https://mheller.
shinyapps.io/shinyapp-demo/.

Shiny apps should satisfy the needs of middle

managers. Now what about top management?

If you are a GitHub user or have simply been

paying attention to the Web and developer land-

scapes the last 10 years, you’ll know about the

Markdown language for generating formatted

documents in HTML and other tag-based markup

languages. RStudio includes a Markdown imple-

mentation and extends it to include embedded

R code chunks and both LaTeX and MathML in

the R Markdown package. You can also create

interactive R Markdown documents using Shiny

and publish them to your own Shiny server or to

shinyapps.io. For an example, see Figure 11.

https://mheller.shinyapps.io/shinyapp-demo/
https://mheller.shinyapps.io/shinyapp-demo/
https://en.wikipedia.org/wiki/Markdown
http://rmarkdown.rstudio.com/
http://www.shinyapps.io/

Deep Dive

InfoWorld.com deep dive series 1 2C r u n c h b i g data w it h R

The power of R
As we’ve seen, R is a useful tool for data scientists and

statisticians, and its somewhat nonstandard scripting

language will be of interest to programmers who might

otherwise resort to Python (with NumPy, Pandas, and

StatsModels); SQL (for data held in a database); or SAS

(and its GUI derivative, JMP) for their data analysis.

Compared to Excel, R has considerably more statistical

and graphing power, especially if you add packages for

your particular needs, and it’s much more auditable. It’s

far easier to validate an R script than a spreadsheet full

of formulas.

With the addition of RStudio as an IDE, developing

R applications can be quite productive. RStudio Server

allows companies to take advantage of the huge RAM

and many processors available in big server hardware,

Shiny turns R into a Web application server, and R

Markdown allows you to use R for reports.

On the other hand, the great power of R and the

large number of R packages available can make for a

fairly intimidating learning curve. It helps a lot to have

some statistics background when learning and using R,

but that’s true for all data science. As can be said for any

other programming language with many libraries avail-

able, your best strategy for learning R is to take it one

step at a time. n

Martin Heller is a contributing editor for InfoWorld

reviews.

Figure 11.
An example of R
Markdown made
interactive. The
underlying code is a
header block, a few
lines of Markdown,
and a dozen lines of
R. See Figure 12.

Figure 12.
The faithful$eruptions data
used in this example is
from the Old Faithful
geyser data built into the R
Datasets package.

