
ADVANCED
BEGINNER’S

guide to

By Sharon Machlis, Edited by Johanna Ambrosio

FROM IDG

Advanced beginner’s guide to R

2

C O M P U T E RWO R L D . C O M

S
o you’ve gone through the Computerworld
Beginner’s Guide to R and want to take some
next steps in your R journey? In this advanced
beginner’s guide, you’ll learn data wrangling, best
packages to use for different tasks, how to make

maps with R and more.

Table of Contents

Wrangle data with R
n  Add a column to an existing data frame

n  Syntax 1: By equation

n  Syntax 2: R’s transform() function

n  Syntax 3: R’s apply function

n  Syntax 4: mapply()

n  Syntax 5: dplyr

n  Getting summaries by data subgroups

n  Bonus special case: Grouping by date
range

n  Sorting your results

n  Reshaping: Wide to long

n  Reshaping: Long to wide

n  dplyr basics

Visualizing data with ggplot2
n  ggplot2 101

n  Command cheat sheet

Great R packages for data import,
wrangling and visualization

Create choropleth maps in R
n  Step 1: Get election results data

n  Step 2: Decide what data to map

n  Step 3: Get your geographic data

n  Step 4: Merge spatial and results data

n  Step 5: Create a static map

n � Step 6: Create palette and pop-ups for
interactive maps

n  Step 7: Generate an interactive map

n  Step 8: Add palettes for a multi-layer
map

n  Step 9: Add map layers and controls

n  Step 10: Save your interactive map

n  Create a Leaflet map with markers

Extract custom data from the
Google Analytics API
n � Step 1: Install packages

n � Step 2: Allow rga to access your Google
Analytics account

n � Step 3: Extract data

n � Step 4: Manipulate your data

More R Resources

http://www.computerworld.com
http://www.computerworld.com/article/2884322/learn-r-programming-basics-with-our-pdf.html

Advanced beginner’s guide to R

3

C O M P U T E RWO R L D . C O M

Wrangle data with R
I’ve created a sample data set with three years of revenue
and profit data from Apple, Google and Microsoft. (The
source of the data was the companies themselves; fy
means fiscal year. And while the data is a bit old now, the
wrangling will be the same regardless of fiscal year.) If
you’d like to follow along, you can type (or cut and paste)
this into your R terminal window:

fy <- c(2010,2011,2012,2010,2011,2012,2010,2011,2012)
company <- c("Apple","Apple","Apple","Google","Google",
"Google","Microsoft","Microsoft","Microsoft")
revenue <- c(65225,108249,156508,29321,37905,50175,62484,
69943,73723)
profit <- c(14013,25922,41733,8505,9737,10737,18760,23150,
16978)
companiesData <- data.frame(fy, company, revenue, profit)

The code above will create a data frame like the one below,
stored in a variable named "companiesData":

 fy company revenue profit

1 2010 Apple 65225 14013

2 2011 Apple 108249 25922

3 2012 Apple 156508 41733

4 2010 Google 29321 8505

5 2011 Google 37905 9737

6 2012 Google 50175 10737

7 2010 Microsoft 62484 18760

8 2011 Microsoft 69943 23150

9 2012 Microsoft 73723 16978

(R adds its own row numbers if you don’t include row
names.)

If you run the str() function on the data frame to see its
structure, you’ll see that the year is being treated as a
number and not as a year or factor:

http://www.computerworld.com

Advanced beginner’s guide to R

4

C O M P U T E RWO R L D . C O M

str(companiesData)
'data.frame': 9 obs. of 4 variables:
$ fy : num 2010 2011 2012 2010 2011 ...
$ company: Factor w/ 3 levels "Apple","Google",..: 1 1 1 2
2 2 3 3 3
$ revenue: num 65225 108249 156508 29321 37905 ...
$ profit : num 14013 25922 41733 8505 9737 ...

I may want to group my data by year, but don’t think I’m
going to be doing specific time-based analysis, so I’ll turn
the fy column of numbers into a column that contains
R categories (called factors) instead of dates with the
following command:

companiesData$fy <- factor(companiesData$fy,
ordered = TRUE)

Now we’re ready to get to work.

Add a column to an existing data frame
One of the easiest tasks to perform in R is adding a new
column to a data frame based on one or more other
columns. You might want to add up several of your existing
columns, find an average or otherwise calculate some

“result” from existing data in each row.

There are many ways to do this in R. Some will seem overly
complicated for this easy task at hand, but for now you’ll have
to take my word for it that some more complex options can
come in handy for advanced users with more robust needs.

Syntax 1: By equation

Simply create a variable name for the new column and pass
in a calculation formula as its value if, for example, you
want a new column that’s the sum of two existing columns:

dataFrame$newColumn <- dataFrame$oldColumn1 +
dataFrame$oldColumn2

As you can probably guess, this creates a new column called
"newColumn" with the sum of oldColumn1 + oldColumn2 in
each row.

http://www.computerworld.com

Advanced beginner’s guide to R

5

C O M P U T E RWO R L D . C O M

For our sample data frame called data, we could add a
column for profit margin by dividing profit by revenue and
then multiplying by 100:

companiesData$margin <- (companiesData$profit /
companiesData$revenue) * 100

That gives us:

 fy company revenue profit margin

1 2010 Apple 65225 14013 21.48409

2 2011 Apple 108248 25922 23.94664

3 2012 Apple 156508 41733 26.66509

4 2010 Google 29321 8505 29.00651

5 2011 Google 37905 9737 25.68790

6 2012 Google 50175 10737 21.39910

7 2010 Microsoft 62484 18760 30.02369

8 2011 Microsoft 69943 23150 33.09838

9 2012 Microsoft 73723 16978 23.02945

Whoa — that’s a lot of decimal places in the new margin
column.

We can round that off to just one decimal place with the
round() function; round() takes the format:

round(number(s) to be rounded, how many decimal places you
want)

So, to round the margin column to one decimal place:

companiesData$margin <- round(companiesData$margin, 1)

And you’ll get this result:

 fy company revenue profit margin

1 2010 Apple 65225 14013 21.5

2 2011 Apple 108248 25922 23.9

3 2012 Apple 156508 41733 26.7

4 2010 Google 29321 8505 29.0

5 2011 Google 37905 9737 25.7

6 2012 Google 50175 10737 21.4

7 2010 Microsoft 62484 18760 30.0

8 2011 Microsoft 69943 23150 33.1

9 2012 Microsoft 73723 16978 23.0

http://www.computerworld.com

Advanced beginner’s guide to R

6

C O M P U T E RWO R L D . C O M

Syntax 2: R’s transform() function

This is another way to accomplish what we did above.
Here’s the basic transform() syntax:

dataFrame <- transform(dataFrame, newColumnName =
some equation)

So, to get the sum of two columns and store that into a new
column with transform(), you would use code such as:

dataFrame <- transform(dataFrame, newColumn =
oldColumn1 + oldColumn2)

To add a profit margin column to our data frame with
transform() we’d use:

companiesData <- transform(companiesData, margin =
(profit/revenue) * 100)

We can then use the round() function to round the column
results to one decimal place. Or, in one step, we can create a
new column that’s already rounded to one decimal place:

companiesData <- transform(companiesData, margin =
round((profit/revenue) * 100, 1))

One brief aside about round(): You can use negative
numbers for the second, “number of decimal places”
argument. While round(73842.421, 1) will round to one
decimal, in this case 73842.42, round(73842.421, -3) will
round to the nearest thousand, in this case 74000.

Syntax 3: R’s apply() function

As the name helpfully suggests, this will apply a function
to a data frame (or several other R data structures, but
we’ll stick with data frames for now). This syntax is more
complicated than the first two but can be useful for some
more complex calculations.

The basic format for apply() is:

dataFrame$newColumn <- apply(dataFrame, 1, function(x) {
. . . })

The line of code above will create a new column called
"newColumn" in the data frame; the contents will be
whatever the code in { . . . } does.

Here’s what each of those apply() arguments above is doing.
The first argument for apply() is the existing data frame.
The second argument — 1 in this example — means “apply

http://www.computerworld.com

Advanced beginner’s guide to R

7

C O M P U T E RWO R L D . C O M

a function by row.” If that argument was 2, it would mean
“apply a function by column” — for example, if you wanted
to get a sum or average by columns instead of for each row.

The third argument, function(x), should appear as written.
More specifically the function() part needs to be written
as just that; the "x" can be any variable name. This means

“What follows after this is an ad-hoc function that I haven’t
named. I’ll call its input argument x.” What’s x in this
case? It’s each item (row or column) being iterated over by
apply().

Finally, { . . . } is whatever you want to be doing with each
item you’re iterating over.

Keep in mind that apply() will seek to apply the function on
every item in each row or column. That can be a problem
if you’re applying a function that works only on numbers if
some of your data frame columns aren’t numbers.

That’s exactly the case with our sample data of financial
results. For the data variable, this won’t work:

apply(companiesData, 1, function(x) sum(x))

Why? Because (apply) will try to sum every item per row,
and company names can’t be summed.

To use the apply() function on only some columns in the
data frame, such as adding the revenue and profit columns
together (which, I’ll admit, is an unlikely need in the real
world of financial analysis), we’d need to use a subset of the
data frame as our first argument. That is, instead of using
apply() on the entire data frame, we just want apply() on
the revenue and profit columns, like so:

apply(companiesData[,c('revenue', 'profit')], 1,
function(x) sum(x))

Where it says:

[c('revenue', 'profit')]

after the name of the data frame, it means “only use
columns revenue and profit” in the sum.

You then might want to store the results of apply in a new
column, such as:

companiesData$sums <- apply(companiesData[,
c('revenue', 'profit')], 1, function(x) sum(x))

http://www.computerworld.com

Advanced beginner’s guide to R

8

C O M P U T E RWO R L D . C O M

That’s fine for a function like sum, where you take each
number and do the same thing to it. But let’s go back to our
earlier example of calculating a profit margin for each row.
In that case, we need to pass profit and revenue in a certain
order — it’s profit divided by revenue, not the other way
around — and then multiply by 100.

How can we pass multiple items to apply() in a certain
order for use in an anonymous function(x)? By referring
to the items in our anonymous function as x[1] for the first
one, x[2] for the second, etc., such as:

companiesData$margin <- apply(companiesData[,
c('revenue', 'profit')], 1,
function(x) { (x[2]/x[1]) * 100 })

That line of code above creates an anonymous function
that uses the second item — in this case profit, since it’s
listed second in companiesData[,c('revenue', 'profit')] — and
divides it by the first item in each row, revenue. This will work
because there are only two items here, revenue and profit —
remember, we told apply() to use only those columns.

Syntax 4: mapply()

This, and the simpler sapply(), also can apply a function to
some — but not necessarily all — columns in a data frame,
without having to worry about numbering each item like
x[1] and x[2] above. The mapply() format to create a new
column in a data frame is:

dataFrame$newColumn <- mapply(someFunction,
dataFrame$column1, dataFrame$column2,
dataFrame$column3)

The code above would apply the function someFunction()
to the data in column1, column2 and column3 of each row
of the data frame.

Note that the first argument of mapply() here is the name
of a function, not an equation or formula. So if we want
(profit/revenue) * 100 as our result, we could first write our
own function to do this calculation and then use it with
mapply().

Here’s how to create a named function, profitMargin(),
that takes two variables — in this case we’re calling them
netIncome and revenue just within the function — and
return the first variable divided by the second variable
times 100, rounded to one decimal place:

http://www.computerworld.com

Advanced beginner’s guide to R

9

C O M P U T E RWO R L D . C O M

profitMargin <- function(netIncome, revenue) {
 mar <- (netIncome/revenue) * 100
 mar <- round(mar, 1)
 }

Now we can use that user-created named function with
mapply():

companiesData$margin <- mapply(profitMargin,
companiesData$profit, companiesData$revenue)

Or we could create an anonymous function within mapply():

companiesData$margin <- mapply(function(x, y)
round((x/y) * 100, 1), companiesData$profit,
companiesData$revenue)

One advantage mapply() has over transform() is that you
can use columns from different data frames (note that this
may not always work if the columns are different lengths).
Another is that it’s got an elegant syntax for applying
functions to vectors of data when a function takes more
than one argument, such as:

mapply(someFunction, vector1, vector2, vector3)

sapply() has a somewhat different syntax from mapply, and
there are yet more functions in R’s apply family. I won’t go
into them further here, but this may give you a sense of why
R maestro Hadley Wickham created his own package called
plyr with functions all having the same syntax in order to try
to rationalize applying functions in R. (We’ll get to plyr in
the next section.)

For a more detailed look at base R’s various apply options,
A brief introduction to ‘apply’ in R by bioinformatician Neil
Saunders is a useful starting point.

Syntax 5: dplyr

Hadley Wickham’s dplyr package, released in early 2014
to rationalize and speed up operations on data frames, is
an extremely useful addition to anyone’s R arsenal and
well worth learning. To add a column to an existing data
frame with dplyr, first install the package with install.
packages("dplyr") — you only need to do this once — and
then load it with library("dplyr"). To add a column using
dplyr:

http://www.computerworld.com
http://plyr.had.co.nz
http://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

Advanced beginner’s guide to R

10

C O M P U T E RWO R L D . C O M

companiesData <- mutate(companiesData, margin =
round((profit/revenue) * 100, 1))

See more about dplyr in the dplyr basics section.

Getting summaries by subgroups of your
data
It’s easy to find, say, the highest profit margin in our
data with max(companiesData$margin). To assign the
value of the highest profit margin to a variable named
highestMargin, this simple code does the trick.

highestMargin <- max(companiesData$margin)

That just returns:

[1] 33.09838

but you don’t know anything more about the other
variables in the row, such as year and company.

To see the entire row with the highest profit margin, not
only the value, this is one option:

highestMargin <- companiesData[companiesData$
margin == max(companiesData$margin),]

and here’s another:

highestMargin <- subset(companiesData,
margin==max(margin))

(For an explanation on these two techniques for extracting
subsets of your data, see Get slices or subsets of your data
from the Beginner’s guide to R: Easy ways to do basic data
analysis.)

But what if you want to find rows with the highest profit
margin for each company? That involves applying a function
by groups — what R calls factors.

Both the older plyr and newer dplyr packages created by
Hadley Wickham consider this type of task “split-apply-
combine”: Split up your data set by one or more factors,
apply some function, then combine the results back into a
data set.

plyr’s ddply() function performs a “split-apply-combine” on
a data frame and then produces a new separate data frame
with your results. That’s what the first two letters, dd, stand
for in ddply(), by the way: Input a data frame and get a data

http://www.computerworld.com
http://www.computerworld.com/article/2598083/app-development-beginner-s-guide-to-r-easy-ways-to-do-basic-data-analysis.html?page=4
http://www.computerworld.com/article/2598083/app-development-beginner-s-guide-to-r-easy-ways-to-do-basic-data-analysis.html
http://www.computerworld.com/article/2598083/app-development-beginner-s-guide-to-r-easy-ways-to-do-basic-data-analysis.html

Advanced beginner’s guide to R

11

C O M P U T E RWO R L D . C O M

frame back. There’s a whole group of “ply” functions in
the plyr package: alply to input an array and get back a list,
ldply to input a list and get back a data frame, and so on.
dplyr only handles data frames.

To use the ddply() function, first you need to install the plyr
package if you never have, with:

install.packages("plyr")

Then, if you haven’t yet for your current R session, load the
plyr package with:

library("plyr")

The format for splitting a data frame by multiple factors
and applying a function with ddply would be:

ddply(mydata, c('column name of a factor to group by',
'column name of the second factor to group by'), summarize
OR transform, newcolumn = myfunction(column name(s) I
want the function to act upon))

Let’s take a more detailed look at that. The ddply() first
argument is the name of the original data frame and the
second argument is the name of the column or columns you
want to subset your data by. The third tells ddply() whether
to return just the resulting data points (summarize) or the
entire data frame with a new column giving the desired data
point per factor in every row. Finally, the fourth argument
names the new column and then lists the function you want
ddply() to use.

If you don’t want to have to put the column names in
quotes, an alternate syntax you’ll likely see frequently uses
a dot before the column names:

myresult <- ddply(mydata, .(column name of factor I’m
splitting by, column name second factor I’m splitting by),
summarize OR transform, newcolumn = myfunction(column
name I want the function to act upon))

To get the highest profit margins for each company, we’re
splitting the data frame by only one factor — company.
To get just the highest value and company name for each
company, use summarize as the third argument:

highestProfitMargins <- ddply(companiesData,
.(company), summarize, bestMargin = max(margin))

http://www.computerworld.com

Advanced beginner’s guide to R

12

C O M P U T E RWO R L D . C O M

(Here we’ve assigned the results to the variable
highestProfitMargins.)

Syntax note: Even if you’ve only got one factor, it needs to be
in parentheses after that dot if you’re using the dot to avoid
putting the column name in quotes. No parentheses are
needed for just one factor if you’re using quotation marks:

highestProfitMargins <- ddply(companiesData,
'company', summarize, bestMargin = max(margin))

Either way, you’ll end up with a brand new data frame with
the highest profit margin for each company:

 company bestMargin

1 Apple 26.7

2 Google 29.0

3 Microsoft 33.1

Summarize doesn’t give any information from other
columns in the original data frame. In what year did
each of the highest margins occur? We can’t tell by using
summarize.

If you want all the other column data, too, change
“summarize” to “transform.” That will return your existing
data frame with a new column that repeats the maximum
margin for each company:

highestProfitMargins <- ddply(companiesData,
'company', transform, bestMargin = max(margin))

fy company revenue profit margin bestMar-
gin

1 2010 Apple 65225 14013 21.5 26.7

2 2011 Apple 108248 25922 23.9 26.7

3 2012 Apple 156508 41733 26.7 26.7

4 2010 Google 29321 8505 29.0 29.0

5 2011 Google 37905 9737 25.7 29.0

6 2012 Google 50175 10737 21.4 29.0

7 2010 Microsoft 62484 18760 30.0 33.1

8 2011 Microsoft 69943 23150 33.1 33.1

9 2012 Microsoft 73723 16978 23.0 33.1

http://www.computerworld.com

Advanced beginner’s guide to R

13

C O M P U T E RWO R L D . C O M

Note that this result shows the profit margin for each
company and year in the margin column along with the
bestMargin repeated for each company and year. The only
way to tell which year has the best margin is to compare the
two columns to see where they’re equal.

ddply() lets you apply more than one function at a time, for
example:

myResults <- ddply(companiesData, 'company',
transform, highestMargin = max(margin),
lowestMargin = min(margin))

This gets you:

 fy company revenue profit margin highest-
Margin

lowest-
Margin

1 2010 Apple 65225 14013 21.5 26.7 21.5

2 2011 Apple 108248 25922 23.9 26.7 21.5

3 2012 Apple 156508 41733 26.7 26.7 21.5

4 2010 Google 29321 8505 29.0 29.0 21.4

5 2011 Google 37905 9737 25.7 29.0 21.4

6 2012 Google 50175 10737 21.4 29.0 21.4

7 2010 Microsoft 62484 18760 30.0 33.1 23.0

8 2011 Microsoft 69943 23150 33.1 33.1 23.0

9 2012 Microsoft 73723 16978 23.0 33.1 23.0

In some cases, though, what you want is a new data frame
with just the (entire) rows that have the highest profit
margins. One way to do that is with the somewhat more
complex syntax below:

highestProfitMargins <- ddply(companiesData,
'company', function(x) x[x$margin==max(x$margin),])

 fy company revenue profit margin

1 2012 Apple 156508 41733 26.7

2 2010 Google 29321 8505 29.0

3 2011 Microsoft 69943 23150 33.1

That may look a bit daunting, but really it’s not so bad once
you break it down. Let’s take it step by step.

The ddply(companiesData, company, function(x)) portion
should look familiar by now: companiesData is the original
data frame and function(x) says that an anonymous

http://www.computerworld.com

Advanced beginner’s guide to R

14

C O M P U T E RWO R L D . C O M

(unnamed, ad-hoc) function is coming next. So the only
new part is:

x[x$margin==max(x$margin),]

That code is extracting a subset of x. In this case, x refers
to the data frame that was passed into the anonymous
function. The equation inside the bracket says: I want to
match every row where x$margin equals the maximum of
x$margin. The comma after x$margin==max(x$margin)
tells R to return every column of those matching rows,
since no columns were specified. As an alternative, we
could seek to return only one or several of the columns
instead of all of them.

Note that:

companiesData[companiesData$margin==max(companiesDa
ta$margin),]

alone, without ddply(),gives the highest overall margin,
not the highest margin for each company. But since
the anonymous function is being passed into a ddply()
statement that’s splitting the data frame by company,
what’s returned is the matching row(s) for each company.

One more note about ddply(): While it’s designed for “split,
apply, combine” — that is, applying a function to different
categories of your data — you can still use it to apply a
function to your entire data frame at once. So, once again
here’s the ddply() statement we used to get a summary of
highest profit margin for each company:

highestProfitMargins <- ddply(companiesData,
'company', summarize, bestMargin = max(margin))

To use ddply() to see the highest margin in the entire data
set, not just segmented by company, I’d enter NULL as the
second argument for factors to split by:

highestProfitMargin <- ddply(companiesData, NULL,
summarize, bestMargin = max(margin))

That’s obviously a much more complicated way of
doing this than max(companiesData$margin). But you
nevertheless may find plyr’s "ply" family useful at times
if you want to apply multiple functions on an entire data
structure and like the idea of consistent syntax.

Why learn plyr as well as dplyr? Because your data might
not always be in a data frame. If you do have a data frame,

http://www.computerworld.com

Advanced beginner’s guide to R

15

C O M P U T E RWO R L D . C O M

though, dplyr is usually an excellent choice. Performing
these operations with dplyr is considerably faster than
with plyr — not an issue for a tiny data frame like this,
but important if you’ve got data with thousands of rows.
In addition, I find dplyr syntax to be more readable and
intuitive — once you get used to it.

To add the two columns for highest and lowest margins by
company:

 myresults <- companiesData %>%
 group_by(company) %>%
 mutate(highestMargin = max(margin), lowestMargin =
min(margin))

and to create a new data frame with maximum margin by
company:

highestProfitMargins <- companiesData %>%
 group_by(company) %>%
 summarise(bestMargin = max(margin))

The %>% is a “chaining” operation that allows you to string
together multiple commands on a data frame. The chaining
syntax in general is:

dataframename %>%
 firstfunction(argument for first function) %>%
 secondfunction(argument for second function) %>%
 thirdfunction(argument for third function)

and so on for as many functions as you want to chain. Why?
This lets you group, sort, filter, summarize and more — all
in one block of readable code. In the highestProfitMargins
example above, we’re first grouping the companiesData
data frame by the company column, then getting the
maximum margin for each one of those groups and putting
it in a new column called bestMargin. Finally, those results
will be stored in a variable called highestProfitMargins.

http://www.computerworld.com

Advanced beginner’s guide to R

16

C O M P U T E RWO R L D . C O M

In the myresults example, we’re taking the companiesData
data frame, grouping it by company and then using
mutate() to add two columns: highestMargin and
lowestMargin. Those results are being stored in the variable
myresults.

Note that highestProfitMargins and myresults are a special
type of data frame created by dplyr. If you have problems
running more conventional non-dplry operations on a dplyr
result, convert it to a “regular” data frame with as.data.
frame(), such as

highestProfitMargins <- as.data.
frame(highestProfitMargins)

Bonus special case: Grouping by date
range
If you’ve got a series of dates and associated values, there’s
an extremely easy way to group them by date range such as
week, month, quarter or year: R’s cut() function.

Here are some sample data in a vector:

vDates <- as.Date(c("2013-06-01", "2013-07-08",
"2013-09-01", "2013-09-15"))

Which creates:

[1] "2013-06-01" "2013-07-08" "2013-09-01" "2013-09-15"

The as.Date() function is important here; otherwise R will
view each item as a string object and not a date object.

If you want a second vector that sorts those by month, you
can use the cut() function using the basic syntax:

vDates.bymonth <- cut(vDates, breaks = "month")

That produces:

[1] 2013-06-01 2013-07-01 2013-09-01 2013-09-01

Levels: 2013-06-01 2013-07-01 2013-08-01 2013-09-01

It might be easier to see what’s happening if we combine
these into a data frame:

dfDates <- data.frame(vDates, vDates.bymonth)

Which creates:

http://www.computerworld.com

Advanced beginner’s guide to R

17

C O M P U T E RWO R L D . C O M

 vDates vDates.bymonth

1 2013-06-01 2013-06-01

2 2013-07-08 2013-07-01

3 2013-09-01 2013-09-01

4 2013-09-15 2013-09-01

The new column gives the starting date for each month,
making it easy to then slice by month.

Ph.D. student Mollie Taylor’s blog post Plot Weekly or
Monthly Totals in R introduced me to this shortcut, which
isn’t apparent if you simply read the cut() help file. If you
ever work with analyzing and plotting date-based data, this
short and extremely useful post is definitely worth a read.
Her downloadable code is available as a GitHub gist.

Sorting your results
For a simple sort by one column, you can get the order you
want with the order() function, such as:

companyOrder <- order(companiesData$margin)

This tells you how your rows would be reordered, producing a
list of line numbers such as:

6 1 9 2 5 3 4 7 8

Chances are, you’re not interested in the new order by line
number but instead actually want to see the data reordered.
You can use that order to reorder rows in your data frame
with this code:

companiesOrdered <- companiesData[companyOrder,]

where companyOrder is the order you created earlier.
Or, you can do this in a single (but perhaps less human-
readable) line of code:

companiesOrdered <- companiesData[order(
companiesData$margin),]

If you forget that comma after the new order for your rows
you’ll get an error, because R needs to know what columns
to return. Once again, a comma followed by nothing
defaults to “all columns” but you can also specify just
certain columns like:

http://www.computerworld.com
http://www.mollietaylor.com/2013/08/plot-weekly-or-monthly-totals-in-r.html
http://www.mollietaylor.com/2013/08/plot-weekly-or-monthly-totals-in-r.html
https://gist.github.com/mollietaylor/5846843

Advanced beginner’s guide to R

18

C O M P U T E RWO R L D . C O M

companiesOrdered <- companiesData[order(
companiesData$margin),c("fy", "company")]

To sort in descending order, you’d want companyOrder to
have a minus sign before the ordering column:

companyOrder <- order(-companiesData$margin)

And then:

companiesOrdered <- companiesData[companyOrder,]

You can put that together in a single statement as:

companiesOrdered <-
companiesData[order(-companiesData$margin),]

 fy company revenue profit margin

8 2011 Microsoft 69943 23150 33.1

7 2010 Microsoft 62484 18760 30.0

4 2010 Google 29321 8505 29.0

3 2012 Apple 156508 41733 26.7

5 2011 Google 37905 9737 25.7

2 2011 Apple 108249 25922 23.9

9 2012 Microsoft 73723 16978 23.0

1 2010 Apple 65225 14013 21.5

6 2012 Google 50175 10737 21.4

Note how you can see the original row numbers reordered
at the far left.

If you’d like to sort one column ascending and another
column descending, just put a minus sign before the one
that’s descending. This is one way to sort this data first by
year (ascending) and then by profit margin (descending) to
see which company had the top profit margin by year:

companiesData[order(companiesData$fy,
-companiesData$margin),]

If you don’t want to keep typing the name of the data frame
followed by the dollar sign for each of the column names,
R’s with() function takes the name of a data frame as the
first argument and then lets you leave it off in subsequent
arguments in one command:

companiesOrdered <- companiesData[with(companiesData,
order(fy, -margin)),]

http://www.computerworld.com

Advanced beginner’s guide to R

19

C O M P U T E RWO R L D . C O M

While this does save typing, it can make your code somewhat
less readable, especially for less experienced R users.

Packages offer some more elegant sorting options. The
doBy package features orderBy() using the syntax

orderBy(~columnName + secondColumnName,
data=dataFrameName)

The ~ at the beginning just means “by” (as in “order by
this”). If you want to order by descending, just put a minus
sign after the tilde and before the column name. This also
orders the data frame:

companiesOrdered <- orderBy(~-margin, companiesData)

Both plyr and dplyr have an arrange() function with the syntax

arrange(dataFrameName, columnName, secondColumnName)

To sort descending, use desc(columnName))

companiesOrdered <- arrange(companiesData,
desc(margin))

Reshaping: Wide to long (and back)
Different analysis tools in R — including some graphing
packages — require data in specific formats. One of
the most common — and important — tasks in R data
manipulation is switching between “wide” and “long”
formats in order to use a desired analysis or graphics
function. For example, it is usually easier to visualize data
using the popular ggplot2() graphing package if it’s in long
format. Wide means that you’ve got multiple measurement
columns across each row, like we’ve got here:

fy company revenue profit margin

1 2010 Apple 65225 14013 21.5

2 2011 Apple 108249 25922 23.9

3 2012 Apple 156508 41733 26.7

4 2010 Google 29321 8505 29.0

5 2011 Google 37905 9737 25.7

6 2012 Google 50175 10737 21.4

7 2010 Microsoft 62484 18760 30.0

8 2011 Microsoft 69943 23150 33.1

9 2012 Microsoft 73723 16978 23.0

http://www.computerworld.com

Advanced beginner’s guide to R

20

C O M P U T E RWO R L D . C O M

Each row includes a column for revenue, for profit and,
after some calculations above, profit margin.

Long means that there’s only one measurement per row. but
likely multiple categories, as you see below:

 fy company variable value

1 2010 Apple revenue 65225.0

2 2011 Apple revenue 108249.0

3 2012 Apple revenue 156508.0

4 2010 Google revenue 29321.0

5 2011 Google revenue 37905.0

6 2012 Google revenue 50175.0

7 2010 Microsoft revenue 62484.0

8 2011 Microsoft revenue 69943.0

9 2012 Microsoft revenue 73723.0

10 2010 Apple profit 14013.0

11 2011 Apple profit 25922.0

12 2012 Apple profit 41733.0

13 2010 Google profit 8505.0

14 2011 Google profit 9737.0

15 2012 Google profit 10737.0

16 2010 Microsoft profit 18760.0

17 2011 Microsoft profit 23150.0

18 2012 Microsoft profit 16978.0

19 2010 Apple margin 21.5

20 2011 Apple margin 23.9

21 2012 Apple margin 26.7

22 2010 Google margin 29.0

23 2011 Google margin 25.7

24 2012 Google margin 21.4

25 2010 Microsoft margin 30.0

26 2011 Microsoft margin 33.1

27 2012 Microsoft margin 23.0

Please trust me on this (I discovered it the hard way): Once
you thoroughly understand the concept of wide to long,
actually doing it in R becomes much easier.

http://www.computerworld.com

Advanced beginner’s guide to R

21

C O M P U T E RWO R L D . C O M

If you find it confusing to figure out what’s a category and
what’s a measurement, here’s some advice: Don’t pay too
much attention to definitions that say long data frames
should contain only one “value” in each row. Why? For
people with experience programming in other languages,
pretty much everything seems like a “value.” If the year
equals 2011 and the company equals Google, isn’t 2011 your
value for year and Google your value for company?

For data reshaping, though, the term “value” is being used a
bit differently.

I like to think of a “long” data frame as having only one
“measurement that would make sense to plot on its own” per
row. In the case of these financial results, would it make
sense to plot that the year changed from 2010 to 2011 to
2012? No, because the year is a category I set up in advance
to decide what measurements I want to look at.

Even if I’d broken down the financial results by quarter
— and quarters 1, 2, 3 and 4 certainly look like numbers
and thus “values” — it wouldn’t make sense to plot the
quarter changing from 1 to 2 to 3 to 4 and back again as
a “value” on its own. Quarter is a category — a factor in R
— that you might want to group data by. However, it’s not a
measurement you would want to plot by itself.

This may be more apparent in the world of scientific
experimentation. If you’re testing a new cholesterol drug,
for example, the categories you set up in advance might
look at patients by age, gender and whether they’re given
the drug or a placebo. The measurements (or calculations
resulting from those measurements) are your results:
Changes in overall cholesterol level, LDL and HDL, for
example. But whatever your data, you should have at least
one category and one measurement if you want to create a
long data frame.

In the example data we’ve been using here, my categories
are fy and company, while my measurements are revenue,
profit and margin.

And now here’s the next concept you need to understand
about reshaping from wide to long: Because you want only
one measurement in each row, you need to add a column that
says which type of measurement each value is.

In my existing wide format, the column headers tell me the
measurement type: revenue, profit or margin. But since

http://www.computerworld.com

Advanced beginner’s guide to R

22

C O M P U T E RWO R L D . C O M

I’m rearranging this to only have one of those numbers
in each row, not three, I’ll add a column to show which
measurement it is.

I think an example will make this a lot clearer. Here’s one
“wide” row:

fy company revenue profit margin

2010 Apple 65225 14013 21.48409

And here’s how to have only one measurement per row —
by creating three “long” rows:

fy company financialCategory value

2010 Apple revenue 65225

2010 Apple profit 14013

2010 Apple margin 21.5

The column financialCategory now tells me what type
of measurement each value is. And now, the term “value”
should make more sense.

At last we’re ready for some code to reshape a data frame
from wide to long! As with pretty much everything in
R, there are multiple ways to perform this task. To use
reshape2, first you need to install the package if you never
have, with:

install.packages("reshape2")

Load it with:

library(reshape2)

And then use reshape2’s melt() function. melt() uses the
following format to assign results to a variable named
longData:

longData <- melt(your original data frame, a vector of your
category variables)

That’s all melt() requires: The name of your data frame and
the names of your category variables. However, you can
optionally add several other variables, including a vector of
your measurement variables (if you don’t, melt() assumes
that all the rest of the columns are measurement columns)
and the name you want your new category column to have.

So, again using the data frame of sample data, wide-to-long
code can simply be:

http://www.computerworld.com

Advanced beginner’s guide to R

23

C O M P U T E RWO R L D . C O M

companiesLong <- melt(companiesData, c("fy",
"company"))

This produces:

 fy company variable value

1 2010 Apple revenue 65225.0

2 2011 Apple revenue 108249.0

3 2012 Apple revenue 156508.0

4 2010 Google revenue 29321.0

5 2011 Google revenue 37905.0

6 2012 Google revenue 50175.0

7 2010 Microsoft revenue 62484.0

8 2011 Microsoft revenue 69943.0

9 2012 Microsoft revenue 73723.0

10 2010 Apple profit 14013.0

11 2011 Apple profit 25922.0

12 2012 Apple profit 41733.0

13 2010 Google profit 8505.0

14 2011 Google profit 9737.0

15 2012 Google profit 10737.0

16 2010 Microsoft profit 18760.0

17 2011 Microsoft profit 23150.0

18 2012 Microsoft profit 16978.0

19 2010 Apple margin 21.5

20 2011 Apple margin 23.9

21 2012 Apple margin 26.7

22 2010 Google margin 29.0

23 2011 Google margin 25.7

24 2012 Google margin 21.4

25 2010 Microsoft margin 30.0

26 2011 Microsoft margin 33.1

27 2012 Microsoft margin 23.0

It’s actually fairly simple after you understand the basic
concept. Here, the code assumes that all the other columns
except fy and company are measurements — items you
might want to plot.

http://www.computerworld.com

Advanced beginner’s guide to R

24

C O M P U T E RWO R L D . C O M

You can be lengthier in your code if you prefer, especially if
you think that will help you remember what you did down
the road. The statement below lists all the columns in the
data frame, assigning them to either id.vars or measure.vars,
and also changes the new column names from the default

“variable” and “value.”

I find it a bit confusing that reshape2 calls category
variables “id.vars” (short for ID variables) and not
categories or factors, but after a while you’ll likely get used
to that. Measurement variables in reshape2 are somewhat
more intuitively called measure.vars.

companiesLong <- melt(companiesData,
id.vars=c("fy", "company"),
measure.vars=c("revenue", "profit", "margin"),
variable.name="financialCategory", value.name="amount")

This produces:

fy company financialCategory amount

1 2010 Apple revenue 65225.0

2 2011 Apple revenue 108249.0

3 2012 Apple revenue 156508.0

4 2010 Google revenue 29321.0

5 2011 Google revenue 37905.0

6 2012 Google revenue 50175.0

7 2010 Microsoft revenue 62484.0

8 2011 Microsoft revenue 69943.0

9 2012 Microsoft revenue 73723.0

10 2010 Apple profit 14013.0

11 2011 Apple profit 25922.0

12 2012 Apple profit 41733.0

13 2010 Google profit 8505.0

14 2011 Google profit 9737.0

15 2012 Google profit 10737.0

16 2010 Microsoft profit 18760.0

17 2011 Microsoft profit 23150.0

18 2012 Microsoft profit 16978.0

19 2010 Apple margin 21.5

20 2011 Apple margin 23.9

http://www.computerworld.com

Advanced beginner’s guide to R

25

C O M P U T E RWO R L D . C O M

21 2012 Apple margin 26.7

22 2010 Google margin 29.0

23 2011 Google margin 25.7

24 2012 Google margin 21.4

25 2010 Microsoft margin 30.0

26 2011 Microsoft margin 33.1

27 2012 Microsoft margin 23.0

Reshaping: Long to wide

Once your data frame is “melted,” it can be “cast” into any
shape you want. reshape2’s dcast() function takes a “long”
data frame as input and allows you to create a reshaped
data frame in return. (The somewhat similar acast()
function can return an array, vector or matrix.) One of the
best explanations I’ve seen on going from long to wide with
dcast() is from the R Graphics Cookbook by Winston Chang:

“[S]pecify the ID variables (those that remain in
columns) and the variable variables (those that get

‘moved to the top’). This is done with a formula where
the ID variables are before the tilde (~) and the variable
variables are after it.”

In other words, think briefly about the structure you want
to create. The variables you want repeating in each row
are your “ID variables.” Those that should become column
headers are your “variable variables.”

Look at this row from the original, “wide” version of our
table:

fy company revenue profit margin

2010 Apple 65225 14013 21.5

Everything following fiscal year and company is a
measurement relating to that specific year and company.
That’s why fy and company are the ID variables; revenue,
profit and margin are the “variable variables” that have
been “moved to the top” as column headers.

How to re-create a wide data frame from the long version
of the data? Here’s code, if you’ve got two columns with ID
variables and one column with variable variables:

http://www.computerworld.com
http://shop.oreilly.com/product/0636920023135.do

Advanced beginner’s guide to R

26

C O M P U T E RWO R L D . C O M

wideDataFrame <- dcast(longDataFrame, idVariableColumn1
+ idVariableColumn2 ~ variableColumn, value.var="Name of
column with the measurement values")

dcast() takes the name of a long data frame as the first
argument. You need to create a formula of sorts as the
second argument with the syntax:

id variables ~ variable variables

The id and measurement variables are separated by a tilde,
and if there are more than one on either side of the tilde
they are listed with a plus sign between them.

The third argument for dcast() assigns the name of the
column that holds your measurement values to value.var.

So, to produce the original, wide data frame from
companiesLong using dcast():

companiesWide <- dcast(companiesLong, fy + company
~ financialCategory, value.var="amount")

To break that down piece by piece: companiesLong is
the name of my long data frame; fy and company are the
columns I want to remain as items in each row of my new,
wide data frame; I want to create a new column for each of
the different categories in the financialCategory column
— move them up to the top to become column headers, as
Chang said; and I want the actual measurements for each of
those financial categories to come from the amount column.

Note: Hadley Wickham created the tidyr package to perform
a subset of reshape2’s capabilities with two main functions:
gather() to take multiple values and turn them into key-
value pairs and spread() to go from long to wide. I still use
reshape2 for these tasks, but you may find tidyr better fits
your needs.

dplyr basics
The goal of dplyr is to offer a fairly easy, rational data manip-
ulation. Creator Hadley Wickham talks about just a handful
of basic, core things you want to do when manipulating data:

NN To choose only certain observations or rows by 1 or more
criteria: filter()

NN To choose only certain variables or columns: select()

NN To sort: arrange()

http://www.computerworld.com
https://github.com/hadley/tidyr

Advanced beginner’s guide to R

27

C O M P U T E RWO R L D . C O M

NN To add new columns: mutate()

NN To summarize or otherwise analyze by subgroups: group_
by() and summarise()

NN To apply a function to data by subgroups: group_by() and
do()

There are other useful functions, such as ranking functions
top_n() for the top n items in a group, min_rank() and
dense_rank(), lead() and lag().

dplyr creates class of data frame called tbl_df that behaves
largely like a data frame but has some convenience func-
tionality, such as not accidentally printing out hundreds of
rows if you type its name.

Wickham has a sample data package called nycflights13 for
learning dplyr, but I’ll use a smaller data file for these exam-
ples, a CSV file of domestic flights in and out of Georgia
airports, GAontime.csv, available for download on GitHub.

Note that this just contains data for January through
November 2014.

library(dplyr)
ga <- read.csv("GAontime.csv", stringsAsFactors = FALSE,
header = TRUE)

NOTE: read.csv can take a while to process large data files.
In a hurry?

Use the data.table package’s fread function. data.table has
its own object classes and own ecosystem of functions. If
you’re not planning to use those (I don’t), just convert the
object back to a data frame or dplyr tbl_df object:

http://www.computerworld.com
https://github.com/smach/NICAR15data

Advanced beginner’s guide to R

28

C O M P U T E RWO R L D . C O M

ga <- data.table::fread("GAontime.csv")
You can turn this into a dplyr class tbl_df object with
ga <- tbl_df(ga)
Now see what happens if you just type the variable name
ga
Look at the structure:
str(ga)
There’s also a dplyr-specific function glimpse() with a
slightly better format
glimpse(ga)
Let’s just get Hartfield data. We want to filter for
either ORIGIN or DEST being Hartsfield with code ATL
atlanta <- filter(ga, ORIGIN == "ATL" | DEST == "ATL")

Now there are all sorts of questions we can answer with this
data.

What’s the average, median and longest delay for flights to a
specific place by carrier? I’ll use Boston’s Logan Airport:

bosdelays1 <- atlanta %>%
 filter(DEST == "BOS") %>%
 group_by(CARRIER) %>%
 summarise(
 avgdelay = mean(DEP_DELAY, na.rm = TRUE),
 mediandelay = median(DEP_DELAY, na.rm = TRUE),
 maxdelay = max(DEP_DELAY, na.rm = TRUE)
)

bosdelays1

Or just the average delay by airline to Boston?

avg_delays <- atlanta %>%
 filter(DEST == "BOS") %>%
 group_by(CARRIER) %>%
 summarise(avgdelay = mean(DEP_DELAY, na.rm=TRUE))

avg_delays

http://www.computerworld.com

Advanced beginner’s guide to R

29

C O M P U T E RWO R L D . C O M

What’s the average delay by airline for each month to a
specific destination?

avg_delays_by_month <- atlanta %>%
 filter(DEST == "BOS") %>%
 group_by(CARRIER, MONTH) %>%
 summarise(avgdelay = round(mean(DEP_DELAY,
na.rm=TRUE),1))

avg_delays_by_month

Not as easy to see those, let’s make a datatable:

data.table(avg_delays_by_month)

What were the top 5 longest delays per airline?

delays <- atlanta %>%
 select(CARRIER, DEP_DELAY, DEST, FL_NUM, FL_DATE) %>%
columns I want
 group_by(CARRIER) %>%
 top_n(5, DEP_DELAY) %>%
 arrange(CARRIER, desc(DEP_DELAY))

View(delays)

Which are the unlucky destinations in those top 5?

table(delays$DEST)

What were the top 5 longest delays per destination?

delays2 <- atlanta %>%
 select(CARRIER, DEP_DELAY, DEST, FL_NUM, FL_DATE) %>%
columns I want
 group_by(DEST) %>%
 top_n(5, DEP_DELAY) %>%
 arrange(CARRIER, desc(DEP_DELAY))

View(delays2)

http://www.computerworld.com

Advanced beginner’s guide to R

30

C O M P U T E RWO R L D . C O M

ggplot2 101
There’s a reason ggplot2 is one of the most popular add-on
packages for R: It’s a powerful, flexible and well-thought-out
platform to create data visualizations you can customize to
your heart’s content.

But it also can be a bit overwhelming. While I find the logic
of plot layers to be intuitive, some of the syntax can be a
bit of a challenge. Unless you do a lot of work in ggplot2,
I’m not sure how easy it is to remember that, for example,
the simple task of “make my graph title bold” requires the
rather wordy theme(plot.title = element_text(face =
"bold")).

What follows is a short, highly simplified guide to
visualizing data with ggplot2 along with a table of
commands for a lot of basic, useful tasks.

There’s a visualization philosophy behind ggplot2 called
the “Grammar of Graphics” (that’s where the gg in ggplot2
comes from) to describe various components of a graphic.
Here I’ll focus primarily on what code you need to build a
few basic visualizations layer by layer.

Layer 1 defines which variables are going to do what. And
that’s all. It’s mapping things like what data frame variable
holds your data and which column will be on your x and y
axes.

Here’s an important point about the first layer: When you
use a property like color or size as an “aesthetic property”
(aes) in this first layer, you are not setting a specific color
or a specific size. You are saying something like “I want
the color of my points to change based on the values of
this column” and NOT “Make the colors of my points the
specific color light blue.” Picking your color(s) comes later.

A first layer might look something like this:

myplot <- ggplot(mydf, aes(x="colname1",
y="colname2", color="colname3")

That says: Create a plot using data in mydf and use the
following “aesthetics”: Set the x axis to colname1 values
in mydf, set the y axis to colname2 values in mydf and use
different colors depending on the values in mydf colname3.

What layer 1 doesn’t do is say what kind of visualization
you want: scatterplot, bar graph, histogram, etc. For that

http://www.computerworld.com

Advanced beginner’s guide to R

31

C O M P U T E RWO R L D . C O M

you need layer 2: a geometry, or geom in gpplot-speak.
You need these first two layers before R will actually show
anything (you can add lots more layers for customizing
the graph, but two is your minimum). You add a layer with,
intuitively, the + symbol. Since we already stored layer 1 in
myplot, we can add layer 2 for a scatterplot with:

myplot <- myplot + geom_point()

Make sure your plus sign is on the same line as the new
layer. Your layers can either be all on one line, or code after
the plus can be on a new line, such as:

ggplot(mydf, aes(x="colname1")) +

geom_histogram()

Don’t put the plus sign and new layer on a new line like this

ggplot(mydf, aes(x="colname1"))

+ geom_histogram()

because R will think that first line is complete and not
understand that line 2 goes with line 1.

There are a whole host of customizations you can do
beyond this. For more on ggplot2 layers, see ggplot2
creator Hadley Wickham’s Build a plot layer by layer.

Command cheat sheet
Below is a cheat sheet, easily searchable by task (using the
search function of your PDF reader of choice), to see how
to create and modify plots — everything from generating
basic bar charts and line graphs to customizing colors and
automatically adding annotations.

I’ve also created RStudio code snippets for several dozen
of these tasks, so you don’t even have to copy and paste —
or re-type — these commands if you use RStudio. Instead,
download my free ggplot2 code snippets as part of your
Computerworld Insider registration.

http://www.computerworld.com
http://rpubs.com/hadley/ggplot2-layers
http://www.computerworld.com/article/2936729/free-download-save-r-data-visualization-time-with-these-ggplot2-code-snippets.html

Advanced beginner’s guide to R

32

C O M P U T E RWO R L D . C O M

Cheat sheet for useful ggplot2 tasks

TASK PLOT TYPE FORMAT NOTE

Create basic plot
object that will
display something

Any ggplot(data=mydf,
aes(x=myxcolname,
y=myycolname))

data=mydf sets the overall
source of your data; it must be
a data frame. aes(x=colname1,
y=colname2) sets which vari-
ables are mapped to the x and
y axes. A geom layer must be
added to this object in order for
anything to display, such as +
geom_point() or geom_line().

Create basic
scatterplot

Scatterplot + geom_point() This is added to the basic ggplot
object. Need (continuous)
numerical data on both axes.
aes properties of ggplot you can
assign include x data, y data, and
mapping color, shape or size to
the value of a variable column.
To set the specific color of
points, use the color property of
geom_point, not aes. Aesthetics
are mappings.

Set size of points Scatterplot, points
on line graph and
others

+ geom_point(size=mynumber) Larger numbers make larger
points.

Solve scatterplot
issue of too many
points exactly on top
of each other

Scatterplot + geom_point(position = "jitter") Change the amount of jitter with
geom_jitter(position = position_
jitter(width = mynumber)).

Set shape of points
to be all one shape

Scatterplot, points
on line graph and
others

+ geom_point(shape=mynumber) See chart of available shapes.

Set shape of points
based on category

Scatterplot, points
on line graph and
others

+ geom_
point(aes(shape=mycategory))
+ scale_shape_
manual(values=myshapevector)

mycategory needs to be a
categorical variable. See chart of
available shapes.

Create basic line
graph

Line graph + geom_line() This is added to the basic ggplot
object.

Create line graph
with lines of dif-
ferent colors by
category

Line graph +
geom_line(aes(color=mycategory))

Set color of points or
lines to be one color

Scatterplot, line
graph and others

+ geom_mychoice(color="mycolor") Unlike with bars, here the color
property sets the main color of
the item.

Set color of points
based on a specific
category

Any ggplot(mydf, aes(x=myxcolname,
y=myycolname,
color=mygroupingcol)) +
geom_mychoice()

Default colors will be selected.

http://www.computerworld.com

Advanced beginner’s guide to R

33

C O M P U T E RWO R L D . C O M

TASK PLOT TYPE FORMAT NOTE

Set color of scat-
terplot points by
numeric data values
- define your own
palette

Scatterplot + geom_point(aes(color=mygr
oupingvariable)) + scale_color_
gradient(low="mylowcolor",
high="myhighcolor")

Continuous numeric variable
needed for grouping-by-color
variable when using scale_
color_gradient. There are other
variations with a midpoint color,
specific numbers of colors and
more. See docs for scale_color_
gradient and scale_fill_gradient.

Set color of scat-
terplot points by cat-
egorical data values
- use RColorBrewer

Scatterplot + geom_point(aes(color
=mygroupingvariable)) +
scale_color_brewer(type="seq",
palette="mypalettechoice")

Color grouping variable needs
to be categorical/discrete,
not continuous. Type can be
sequential or diverging; palettes
can be names or numbers. See
documentation.

Set type of line Line graph and oth-
ers with lines

+ geom_line(linetype="mylinetype") Available line types include
solid, dashed, dotted, dotdash,
longdash and twodash.

Set width of line Line graph and oth-
ers with lines

+ geom_line(size=mysizenumber)

Set color of line Line graph and oth-
ers with lines

+ geom_line(color="mycolor") Color can be a color name avail-
able in R like "lightblue" or a
hex value like "#0072B2". Run
colors() in base R to see all avail-
able color names.

Create basic bar
graph

Bar + geom_bar(stat="identity") This is added to the basic ggplot
object. Need categorial data
for x axis. stat="identity" uses
values in a y column for the y
axis. Without this, the graph will
show counts of each value on the
x axis.

Create basic bar
graph with y axis
showing count of
items in x axis

Bar + geom_bar() This is added to the basic ggplot
object. Only an x value is needed
because this default counts
number of records for each x
category.

Reorder x axis based
on y column values
in descending order

Bar, boxplots and
others

ggplot(data = mydf,
aes(x=reorder(myxcolname,
-myycolname), y=myycolname)) +
geom_mychoice()

Needs categorical data on x
axis and numerical data on y
axis. Remove the - before the
y column name if you want
ascending order. A geom such as
geom_bar() or geom_boxplot()
must be added.

Create bar graph
grouped by category
(grouped bar)

Bar ggplot(mydf, aes(x=myxcolname,
y=myycolname,
fill=mygroupcolname))+
geom_bar(stat="identity",
position="dodge")

Without position="dodge", a
stacked barchart is created

http://www.computerworld.com

Advanced beginner’s guide to R

34

C O M P U T E RWO R L D . C O M

TASK PLOT TYPE FORMAT NOTE

Set fill color of bars
(or other 2D items in
graphs) to be all one
specific color

Bar, histogram and
others

+ geom_mychoice(fill="mycolor")

for bar graph:
+ geom_
bar(fill="mycolor,
stat="identity")

Color can be a color
name available in
R like “lightblue”
or a hex value like
“#0072B2”. Run
colors() in base
R to see all avail-
able color names.
There’s a PDF
showing R colors
here; demo(colors)
shows some in your
R session.

Set outline color of
2D graph items such
as bars

Bar, histogram and
others

+ geom_mychoice(color="mycolor") This can be confusing since
“color” is not the main item color
but its outline. As with fill, the
color can be a color name avail-
able in R like “lightblue” or a hex
value like “#0072B2”.

Create a bar graph
that will color each
bar a different color

Bar ggplot(mydf, aes(x=myxcolname,
y=myycolname, fill=myxcolname))
+ geom_bar(stat="identity")

Customize colors for
bar graph with dif-
ferent color for each
bar - define your own
palette

Bar + scale_fill_manual(values=c("mycolor1",
"mycolor2", "mycolor3"))

Customize colors in
a bar graph where
colors have been
defined to change
by a category - use
RColorBrewer

Bar + scale_fill_brewer(palette="mycolo
rbrewerpalettename")

See available RColorBrewer
palettes with display.brewer.
all(n=10, exact.n=FALSE).
RColorBrewer pack-
age must be loaded with
library(RColorBrewer).

Create basic
histogram

Histogram ggplot(data=mydf,
aes(x=myxcolname)) +
geom_histogram()

Change bin width of
histogram

Histogram + geom_histogram(binwidth=mynumber) This sets the width of the bin,
not the number of bins.

Set color of histo-
gram bars to one
color

Histogram + geom_histogram(fill="mycolor")

http://www.computerworld.com

Advanced beginner’s guide to R

35

C O M P U T E RWO R L D . C O M

TASK PLOT TYPE FORMAT NOTE

Add horizontal line
to any type of graph
at a specific position

Any +
geom_hline(yintercept=mynumber)

Set color with color argu-
ment, width with size arg and
type with linetype, such as
geom_hline(yintercept=100,
color=”red", size=2,
linetype="dashed").

Add vertical line to
any type of graph at
a specific position

Any +
geom_vline(xintercept=mynumber)

With categories on x axis,
intercept 3 means the 3rd item
on the axis. Set color with color
arg, width with size arg and
type with linetype, such as
geom_hline(yintercept=100,
color="red", size=2,
linetype="dashed").

Add regression line
(line of best fit) to
scatterplot

Scatterplot + stat_smooth(method=lm,
level=FALSE)

lm stands for linear model.
Change default color by adding
color property in stat_smooth

Add regression line
(line of best fit)
with 95% confi-
dence interval to
scatterplot

Scatterplot + stat_smooth(method=lm,
level=0.95)

lm stands for linear model.

Use an already-
made alternate
theme for graph

Any + theme_mychoice() Available themes include theme_
gray, theme_bw, theme_classic
and theme_minimal. If you are
customizing a pre-made theme,
make sure to add that code
after calling the initial theme_
mychoice() function.

Add title (headline) Any + ggtitle("My headline text")

Change headline size Any + theme(plot.title = element_
text(size = myinteger))

+ theme(plot.title = element_
text(size = rel(myinteger))) sets
the headline size relative to the
plot’s base font.

Change headline
color

Any + theme(plot.title = element_
text(color = "mycolor"))

Make plot headline
bold

Any + theme(plot.title = element_
text(face = "bold"))

Also works for face = "italic" or
"bold.italic"

Change x-axis title Any + xlab("My x-axis title text")

Change y-axis title Any + ylab("My y-axis title text")

Change value labels
along the x axis for
categorical variables

Any + scale_x_discrete(labels=myvector
oflabels)

http://www.computerworld.com

Advanced beginner’s guide to R

36

C O M P U T E RWO R L D . C O M

TASK PLOT TYPE FORMAT NOTE

Change value labels
along the y axis for
continuous numeri-
cal variable

Any + scale_y_continuous(breaks=myvec
torofbreaks)

scale_x_continuous works
similarly for the x axis. A vector
of breaks could look some-
thing like c(0,25,50,75,100) or
seq(0,100,25).

Set y-axis minimum
and maximum
values

Any + ylim(mymin, mymax) xlim works the same for the x
axis. If there are values outside
your defined limits, they won’t
display, so you can use this to
statically zoom in on a portion of
your dataviz.

Rotate x-axis value
labels

Any + theme(axis.text.x= element_
text(angle=myrotationAngle,
hjust=myOptionalTweak,
vjust=myOptionalTweak2))

rotation angle should be
between 1 and 359, such as
theme(axis.text.x= element_
text(angle=45, hjust=1)). hjust
and vjust can be needed to posi-
tion the text properly with the
axis. I often use + theme(axis.
text.x= element_text(angle=45,
hjust = 1.3, vjust = 1.2)) as
settings.

Rotate y-axis title to
be horizontal (paral-
lel to x axis)

Any + theme(axis.title.y = element_
text(angle = 0))

angle can take different values to
rotate y-axis text in other ways.

Turn off automatic
legend

Any + theme(legend.position = "none")

Change order of
legend items

Any mydf$mylegendcolumnNew <-
factor(mydf$mylegendcolumn, lev
els=c(myOrderedVectorOfItems),
ordered = TRUE)

While there are ways to do this in
ggplot2, if order matters to you,
create a variable ordered as you
want in R.

Change legend title
font size

Any + theme(legend.title =
element_text(size=mypointsize))

Change legend
labels size

Any + theme(legend.text =
element_text(size=mypointsize))

http://www.computerworld.com

Advanced beginner’s guide to R

37

C O M P U T E RWO R L D . C O M

TASK PLOT TYPE FORMAT NOTE

Create multiple plots
based on one or two
variables in your
data

Any + facet_grid(mycolname1 ~
mycolname2)

Once you’ve set up an initial plot
using one or more variables, this
facet_grid “formula” plots a grid
of all possible permutations of
additional variables mycolname1
by mycolname2, with mycol-
name1 in the rows and mycol-
name2 in the columns. Example:
You set up a basic plot of online
sales transactions by hour of day,
and then make a facet_grid of
all such transactions subsetted
by category of merchandise and
whether customers were new or
returning. To use facet_grid for
only 1 variable, use a dot for the
other one, such as facet_grid(. ~
mycolname1).

Create multiple plots
based on one or two
variables in your
data

Any + facet_wrap(mycolname1 ~ mycol-
name2, ncol=myinteger)

Similar to facet_grid above but
you can manually set number
of columns or number of rows in
your grid with ncol or nrow, and
only those permutations with
available values will be plotted.
+ facet_wrap(~ mycolname1) to
facet by one variable, then set
nrow or ncol.

Put multiple plots
from different data
on one page - gri-
dExtra package

Any grid.arrange(plot1, plot2, plot3...,
ncol=mynumberofcolumns)

Any number of plots can be
entered, separated by a comma.
ncol defaults to 1. gridExtra
package must be installed and
loaded.

Add text annota-
tions to a plot by x,y
position on plot

Any + annotate("text", x=myxposition,
y=myyposition, label="My text")

There are other options for
annotate besides "text" such as
"rect" for rectangle with proper-
ties xmin, xmax, ymin, ymax
and alpha (transparency) and
optional color (border) and fill
(fill color).

Create and auto
annotate scatterplot
grouped by color -
directlabels package

Scatterplot myplot <- ggplot(mydf,
aes(x=myxcolname, y=myycolname,
color=mygroupingcol)) +
geom_point()

direct.label(myplot,
"smart.grid")

directlabels package
must be installed
and loaded.

Create and auto
annotate line graph
where lines are
different colors by
category

Line graph myplot <- ggplot(mydf,
aes(x=myxcolname, y=myycolname,
color=mygroupingcol)) +
geom_line()

http://www.computerworld.com

Advanced beginner’s guide to R

38

C O M P U T E RWO R L D . C O M

TASK PLOT TYPE FORMAT NOTE

direct.label(myplot,
list(last.points, hjust
= 0.7, vjust = 1))

directlabels package
must be installed
and loaded. first.
points is another
option to label at
start of line instead
of end.

Save plot Any ggsave(filename="myname.ext") ggsave defaults to the most
recent plot, but you can set a
different plot with ggsave
(filename="myname.ext",
plot=myplot). File extension
determines type of file created
— .pdf, .png and so on. Set width
and height in inches with width
and height arguments.

Great R packages for data import,
wrangling and visualization
One of the best things about R is the thousands of
packages users have written to solve specific problems in
various disciplines — analyzing everything from weather
or financial data to the human genome — not to mention
analyzing computer security-breach data.

Some tasks are common to almost all users, though,
regardless of subject area: Data import, data wrangling
and data visualization. The table below shows my favorite
go-to packages for one of these three tasks (plus a few
miscellaneous ones tossed in). The package names in the
table are clickable if you want more information. To find
out more about a package once you’ve installed it, type
help(package = "packagename") in your R console (of
course substituting the actual package name).

Useful R packages for data visualization and munging

PACKAGE CATEGORY DESCRIPTION SAMPLE USE AUTHOR

devtools package develop-
ment, package
installation

While devtools is aimed at
helping you create your own
R packages, it’s also essential
if you want to easily install
other packages from GitHub.
Install it! Requires Rtools on
Windows and XCode on a
Mac. On CRAN.

install_
github("rstudio/
leaflet")

Hadley Wickham
& others

http://www.computerworld.com
http://www.unc.edu/~haksaeng/rNOMADS/rNOMADS_grib_examples.pdf
http://www.quantmod.com/
http://cran.r-project.org/web/packages/qtl/
https://github.com/jayjacobs/verisr

Advanced beginner’s guide to R

39

C O M P U T E RWO R L D . C O M

PACKAGE CATEGORY DESCRIPTION SAMPLE USE AUTHOR

installr misc Windows only: Update your
installed version of R from
within R. On CRAN.

updateR() Tal Galili & others

readxl data import Fast way to read Excel files in
R, without dependencies such
as Java. CRAN.

read_excel("my-
spreadsheet.xls",
sheet = 1)

Hadley Wickham

googlesheets data import, data
export

Easily read data into R from
Google Sheets. CRAN.

mysheet <- gs_
title("Google Spread-
sheet Title")

mydata <-
mydata <- gs_
read(mysheet, ws =
"WorksheetTitle")

Jennifer Bryan

RMySQL data import Read data from a MySQL
database into R. There are
similar packages for other
databases. CRAN.

con <- dbConnect
(RMySQL::MySQL
(), group = "my-db")

myresults <-
dbSendQuery(con,
"SELECT * FROM
mytable")

Jeroen Ooms &
others

readr data import Base R handles most of these
functions; but if you have
huge files, this is a speedy
and standardized way to read
tabular files such as CSVs
into R data frames, as well as
plain text files into character
strings with read_file. CRAN.

read_csv(myfile.csv) Hadley Wickham

rio data import, data
export

rio has a good idea: Pull a
lot of separate data-reading
packages into one, so you
just need to remember 2
functions: import and export.
CRAN.

import("myfile") Thomas J. Leeper
& others

psych data analysis No, I’m not using the func-
tions that analyze personali-
tydata; but I do regularly use
the describe and describeBy
functions to summarize data
sets, as well as read.clipboard
to get data I’ve copied into R.
CRAN.

describe(mydf) William Revelle

sqldf data wrangling,
data analysis

Do you know a great SQL
query you’d use if your R data
frame were in a SQL data-
base? Run SQL queries on
your data frame with sqldf.
CRAN.

sqldf("select * from
mydf where mycol
> 4")

G. Grothendieck

http://www.computerworld.com

Advanced beginner’s guide to R

40

C O M P U T E RWO R L D . C O M

PACKAGE CATEGORY DESCRIPTION SAMPLE USE AUTHOR

jsonlite data import, data
wrangling

Parse json within R or turn R
data frames into json. CRAN.

myjson <-
toJSON(mydf,
pretty=TRUE)

mydf2 <-
fromJSON(myjson)

Jeroen Ooms &
others

XML data import, data
wrangling

Many functions for elegantly
dealing with XML and HTML,
such as readHTMLTable.
CRAN.

mytables <- readHT-
MLTable
(myurl)

Duncan Temple
Lang

quantmod data import, data
visualization, data
analysis

Even if you’re not interested
in analyzing and graphing
financial investment data,
quantmod has easy-to-use
functions for importing
economic as well as financial
data from sources like the
Federal Reserve. CRAN.

getSymbols("AITINO"
, src="FRED")

Jeffrey A. Ryan

rvest data import, web
scraping

Web scraping: Extract data
from HTML pages. Inspired
by Python’s Beautiful Soup.
Works well with Selectorgad-
get. CRAN.

See the package
vignette

Hadley Wickham

dplyr data wrangling,
data analysis

The essential data-munging
R package when working with
data frames. Especially use-
ful for operating on data by
categories. CRAN.

See the intro vignette Hadley Wickham

plyr data wrangling While dplyr is my go-to
package for wrangling data
frames, the older plyr pack-
age still comes in handy when
working with other types of R
data such as lists. CRAN.

llply(mylist,
myfunction)

Hadley Wickham

reshape2 data wrangling Change data row and column
formats from "wide" to
"long"; turn variables into col-
umn names or column names
into variables and more. The
tidyr package is a newer, more
focused option, but I still use
reshape2. CRAN.

See my tutorial Hadley Wickham

tidyr data wrangling While I still prefer reshape2
for general re-arranging, tidy
won me over with special-
ized functions like fill (fill in
missing columns from data
above) and replace_na. CRAN

See examples in this
blog post.

Hadley Wickham

http://www.computerworld.com

Advanced beginner’s guide to R

41

C O M P U T E RWO R L D . C O M

PACKAGE CATEGORY DESCRIPTION SAMPLE USE AUTHOR

data.table data wrangling,
data analysis

Popular package for heavy-
duty data wrangling. While
I typically prefer dplyr, data.
table has many fans for its
speed with large data sets.
CRAN.

Useful tutorial Matt Dowle &
others

stringr data wrangling Numerous functions for text
manipulation. Some are simi-
lar to existing base R func-
tions but in a more standard
format, including working
with regular expressions.
Some of my favorites: str_pad
and str_trim. CRAN.

str_pad
(myzipcodevector,
5, "left", "0")

Hadley Wickham

lubridate data wrangling Everything you ever wanted
to do with date arithmetic,
although understanding &
using available functionality
can be somewhat complex.
CRAN.

mdy("05/06/2015")
+ months(1)

More examples in
the package vignette

Garrett Grol-
emund, Hadley
Wickham & others

zoo data wrangling,
data analysis

Robust package with a slew
of functions for dealing with
time series data; I like the
handy rollmean function with
its align=right and fill=NA
options for calculating mov-
ing averages. CRAN.

rollmean(mydf, 7) Achim Zeileis &
others

editR data display Interactive editor for R Mark-
down documents. On GitHub
at swarm-lab/editR.

editR("path/to/
myfile.Rmd")

Simon Garnier

knitr data display Add R to a markdown docu-
ment and easily generate
reports in HTML, Word and
other formats. A must-have if
you’re interested in reproduc-
ible research and automating
the journey from data analy-
sis to report creation. CRAN.

This tutorial is a few
years old but goes
over some basics

Yihui Xie & others

listviewer data display, data
wrangling

Elegant way to view complex
nested lists within R. GitHub
timelyportfolio/listviewer.

jsonedit(mylist) Kent Russell

DT data display Create a sortable, searchable
table in one line of code with
this R interface to the jQuery
DataTables plug-in. GitHub
rstudio/DT.

datatable(mydf) RStudio

http://www.computerworld.com

Advanced beginner’s guide to R

42

C O M P U T E RWO R L D . C O M

PACKAGE CATEGORY DESCRIPTION SAMPLE USE AUTHOR

ggplot2 data visualization Powerful, flexible and well-
thought-out dataviz package
following ‘grammar of graph-
ics’ syntax to create static
graphics, but be prepared for
a steep learning curve. CRAN.

qplot(factor
(myfactor), data
=mydf, geom="bar",
fill=factor(myfactor))

See my searchable
ggplot2 cheat sheet
and

time-saving code
snippets.

Hadley Wickham

dygraphs data visualization Create HTML/JavaScript
graphs of time series - one-
line command if your data is
an xts object. CRAN.

dygraph
(myxtsobject)

JJ Allaire &
RStudio

googleVis data visualization Tap into the Google Charts
API using R. CRAN.

mychart <- gvis
ColumnChart
(mydata)

plot(Column)

Numerous examples
here

Markus Gesmann
& others

metricsgraphics data visualization R interface to the metrics-
graphics JavaScript library
for bare-bones line, scatter-
plot and bar charts. GitHub
hrbrmstr/metricsgraphics.

See package intro Bob Rudis

RColorBrewer data visualization Not a designer? RColorBrewer
helps you select color pal-
lettes for your visualizations.
CRAN.

See Jennifer Bryan’s
tutorial

Erich Neuwirth

plotly data visualization This allows you to create
interactive JavaScript graphs
at the Plotly service, which
you can link to or embed
in a Web page. Free plotly
account required. GitHub
ropensci/plotly.

See the documenta-
tion examples

rOpenSci project

leaflet mapping Map data using the Leaflet
JavaScript library within R.
GitHub rstudio/leaflet.

See my tutorial RStudio

choroplethr mapping Easy ways to map data with
built-in state, county, zip code
and country geographic info;
you can also import your own
shape files. Recent update
improved earlier issues with
projections. CRAN.

data(df_pop_state)

http://www.computerworld.com

Advanced beginner’s guide to R

43

C O M P U T E RWO R L D . C O M

PACKAGE CATEGORY DESCRIPTION SAMPLE USE AUTHOR

state_choropleth(df_
pop_state)

Free email course by
pkg author

Ari Lamstein

tmap mapping Not the most polished-
looking maps for publication
or presentation, but this new
package offers a very easy
way to read in shape files and
join data files with geographic
info, as well as do some
exploratory mapping. CRAN.

See the package
vignette

Martijn Tennekes

fitbitScraper misc Import Fitbit data from your
account into R. CRAN.

cookie <-
login(email="",
password="")

df <- get_daily_
data(cookie,
what="steps",
"2015-01-01",
"2015-05-18")

Cory Nisson

rga Web analytics Use Google Analytics with R.
GitHub skardhamar/rga.

See package README
file and my tutorial

Bror Skardhamar

RSiteCatalyst Web analytics Use Adobe Analytics with
R. GitHub randyzwitch/
RSiteCatalyst.

See intro video Randy Zwitch

roxygen2 package
development

Useful tools for documenting
functions within R packages.
CRAN.

See this short, easy-
to-read blog post

on writing R
packages

Hadley Wickham
& others

shiny data visualization Turn R data into interactive
Web applications. I haven’t
used this much yet, but I’ve
seen some nice (if sometimes
sluggish) apps and it’s got
many enthusiasts. CRAN.

See the tutorial RStudio

openxlsx misc If you need to write to an
Excel file as well as read, this
package is easy to use. CRAN.

write.xlsx(mydf,
"myfile.xlsx")

Alexander Walker

gmodels data wrangling,
data analysis

There are several functions
for modeling data here, but
the one I use, CrossTable, sim-
ply creates cross-tabs with
loads of options -- totals, pro-
protions and several statisti-
cal tests. CRAN.

CrossTable
(myxvector,
myyvector, prop.t=
FALSE, prop.chisq
= FALSE)

Gregory R. Warnes

http://www.computerworld.com

Advanced beginner’s guide to R

44

C O M P U T E RWO R L D . C O M

PACKAGE CATEGORY DESCRIPTION SAMPLE USE AUTHOR

car data wrangling car’s recode function makes
it easy to bin continuous
numerical data into catego-
ries or factors. While base R’s
cut accomplishes the same
task, I find recode’s syntax
to be more intuitive - just
remember to put the entire
recoding formula within
double quotation marks.
CRAN.

recode(x, "1:3='Low';
4:7='Mid';
8:hi='High'")

John Fox & others

rcdimple data visualization R interface to the dimple
JavaScript library with numer-
ous customization options.
Good choice for JavaScript
bar charts, among others.
GitHub timelyportfolio/
rcdimple.

dimple(mtcars, mpg
~ cyl, type = "bar")

Kent Russell

foreach data wrangling Efficient - and intuitive if you
come from another program-
ming language - for loops in
R. CRAN.

foreach(i=1:3) %do%
sqrt(i)

Also see The Won-
ders of foreach

Revolution
Analytics, Steve
Weston

downloader data acquisition Wrapper for base R down-
load function that eases
dealing with files over https
(although R 3.2.2 solves
some of these issues as well).
CRAN.

download("https://
url.com/filename",
"myfilename.zip",
mode = "wb")

NA

scales data wrangling While this package has many
more sophisticated ways
to help you format data for
graphing, it’s worth a down-
load just for the comma(),
percent() and dollar() func-
tions. CRAN.

comma(mynumvec) Hadley Wickham

plotly data visualization R interface to the open-
source Plotly JavaScript
library that was open-sourced
in late 2015. Graphs have a
distinctive look and a promo
for the Plotly site, which may
not be for everyone, but it’s
full-featured, relatively easy
to learn (especially if you
know ggplot2) and includes
an ggplotly() function for
graphs created with ggplot2.
CRAN.

d <- diamonds
[sample(nrow
(diamonds), 1000),]

http://www.computerworld.com

Advanced beginner’s guide to R

45

C O M P U T E RWO R L D . C O M

PACKAGE CATEGORY DESCRIPTION SAMPLE USE AUTHOR

plot_ly(d, x = carat,
y = price, text =
paste("Clarity: ",
clarity), mode =
"markers", color =
carat, size = carat)

Carson Sievert &
others

A few important points for newbies:

To install a package from CRAN, use the command
install.packages("packagename") — of course
substituting the actual package name for packagename and
putting it in quotation marks. Package names, like pretty
much everything else in R, are case sensitive.

To install from GitHub, it’s easiest to use the install-
github function from the devtools package, using the
format devtools::install_github("githubaccountname/
packagename"). That means you first want to install
the devtools package on your system with install.
packages("devtools"). Note that devtools sometimes
needs some extra non-R software on your system — more
specifically, an Rtools download for Windows or Xcode for
OS X. There’s more information about devtools here.

In order to use a package’s function during your R session,
you need to do one of two things. One option is to load
it into your R session with the library("packagename")
or require("packagename"). The other is to call
the function including the package name, like this:
packagename::functioname(). Package names, like pretty
much everything else in R, are case sensitive.

Create choropleth maps in R
There are many options for mapping data besides R, of
course. If you do this kind of thing often or want to create
a map with lots of slick bells and whistles, it could make
more sense to learn GIS software like Esri’s ArcGIS
or open-source QGIS. If you care only about well-used
geographic areas such as cities, counties or zip codes,
software like Tableau and Microsoft Power BI may have
easier interfaces. If you don’t mind drag-and-drop tools and
having your data in the cloud, there are still more options
such as Google Fusion Tables.

http://www.computerworld.com
http://cran.r-project.org/bin/windows/Rtools/
https://developer.apple.com/xcode/downloads/
https://developer.apple.com/xcode/downloads/
https://github.com/hadley/devtools
http://storymaps.esri.com/stories/2012/precincts-2008/
https://www.arcgis.com/home/
http://www.qgis.org/en/site/
http://kb.tableau.com/articles/knowledgebase/polygon-shaded-maps
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-tutorial-filled-maps-choropleths/
https://support.google.com/fusiontables/answer/1032332?hl=en

Advanced beginner’s guide to R

46

C O M P U T E RWO R L D . C O M

But there are also advantages to using R — a language
designed for data analysis and visualization. It’s open
source, which means you don’t have to worry about ever
losing access to (or paying for) your tools. All your data
stays local if you want it to. It’s fully command-line scripted
end-to-end, making an easily repeatable process in a single
platform from data input and re-formatting through final
visualization. And, R’s mapping options are surprisingly
robust.

Ready to code your own election results maps — or any
other kind of color-coded choropleth map? Here’s how
to handle a straightforward two-person race and a more
complex race with three or more candidates in R.

We’ll be using two mapping packages in this tutorial: tmap
for quick static maps and leaflet for interactive maps. You
can install and load them now with

install.packages("tmap")

install.packages("leaflet")

library("tmap")

library("leaflet")

(Skip the install.packages lines for any R packages that are
already on your system.)

Step 1: Get election results data
I’ll start with the New Hampshire Democratic primary
results, which are available from the NH secretary of state’s
office as a downloadable Excel spreadsheet.

Getting election data into the proper format for mapping
is one of this project’s biggest challenges — more so than
actually creating the map. For simplicity, let’s stick to
results by county instead of drilling down to individual
towns and precincts.

One common problem: Results data need to have one
column with all election district names — whether
counties, precincts or states — and candidate names
as column headers. Many election returns, though, are
reported with each election district in its own column and
candidate results by row.

http://www.computerworld.com
https://en.wikipedia.org/wiki/Choropleth_map
http://sos.nh.gov/2016DemPresPrim.aspx?id=8589955214
http://sos.nh.gov/2016DemPresPrim.aspx?id=8589955214

Advanced beginner’s guide to R

47

C O M P U T E RWO R L D . C O M

That’s the case with the official NH results. I transposed the
data to fix that and otherwise cleaned up the spreadsheet a
bit before importing it into R (such as removing ", d" after
each candidate’s name). The first column now has county
names, while every additional column is a candidate name;
each row is a county result. I also got rid of the' total' row at
the bottom, which can interfere with data sorting.

You can do the same — or, if you’d like to download the
data file and all the other files I’m using, including R code,
head to the “Mapping with R” file download page. (Free
Insider registration needed. Bonus: You’ll be helping me
convince my boss that I ought to write more of these types
of tutorials). If you download and unzip the mapping with R
file, look for NHD2016.xlsx in the zip file.

To make your R mapping script as re-usable as possible, I
suggest putting data file names at the top of the script —
that makes it easy to swap in different data files without
having to hunt through code to find where a file name
appears. You can put this toward the top of your R script:

datafile <- "data/NHD2016.xlsx"

Note: My data file isn’t in the same working directory as
my R script; I have it in a data subdirectory. Make sure to
include the appropriate file path for your system, using
forward slashes even on Windows.

There are several packages for importing Excel files into R;
but for ease of use, you can’t beat rio. Install it with:

install.packages("rio") if it’s not already on your
system, and then run:

nhdata <- rio::import(datafile)

to store data from the election results spreadsheet into a
variable called nhdata.

There were actually 28 candidates in the results; but to
focus on mapping instead of data wrangling, let’s not worry
about the many minor candidates and pretend there were
just two: Hillary Clinton and Bernie Sanders. Select just the
County, Clinton and Sanders columns with:

nhdata <- nhdata[,c("County", "Clinton",
"Sanders")]

http://www.computerworld.com
http://www.computerworld.com/article/3039123/data-analytics/bonus-downloads-how-to-make-color-coded-thematic-maps-in-r.html

Advanced beginner’s guide to R

48

C O M P U T E RWO R L D . C O M

Step 2: Decide what data to map
Now we need to think about what exactly we’d like to color-
code on the map. We need to pick one column of data for
the map’s county colors, but all we have so far is raw vote
totals. We probably want to calculate either the winner’s
overall percent of the vote, the winner’s percentage-point
margin of victory or, less common, the winner’s margin
expressed by number of votes (after all, winning by 5 points
in a heavily populated county might be more useful than
winning by 10 points in a place with way fewer people if the
goal is to win the entire state).

It turns out that Sanders won every county; but if he didn’t,
we could still map the Sanders “margin of victory” and use
negative values for counties he lost.

Let’s add columns for candidates’ margins of victory (or
loss) and percent of the vote, again for now pretending
there were votes cast only for the two main candidates:

nhdata$SandersMarginVotes <- nhdata$Sanders -
nhdata$Clinton
nhdata$SandersPct <- (nhdata$Sanders - nhdata$Clinton) /
(nhdata$Sanders + nhdata$Clinton)
Will use formatting later to multiply by 100
 nhdata$ClintonPct <- (nhdata$Clinton - nhdata$Sanders) /
(nhdata$Sanders + nhdata$Clinton)
nhdata$SandersMarginPctgPoints <- nhdata$SandersPct -
nhdata$ClintonPct

Step 3: Get your geographic data
Whether you’re mapping results for your city, your state or
the nation, you need geographic data for the area you’ll be
mapping in addition to election results. There are several
common formats for such geospatial data; but for this
tutorial, we’ll focus on just one: shapefiles, a widely used
format developed by Esri.

If you want to map results down to your city or town’s
precinct level, you’ll probably need to get files from a local
or state GIS office. For mapping by larger areas like cities,
counties or states, the Census Bureau is a good place to
find shapefiles.

http://www.computerworld.com
https://www.census.gov/geo/maps-data/data/tiger-line.html

Advanced beginner’s guide to R

49

C O M P U T E RWO R L D . C O M

For this New Hampshire mapping project by county, I
downloaded files from the Cartographic Boundary
shapefiles page — these are smaller, simplified files
designed for mapping projects where extraordinarily
precise boundaries aren’t needed. (Files for engineering
projects or redistricting tend to be considerably larger).

I chose the national county file at >http://www2.census.gov/
geo/tiger/GENZ2014/shp/cb_2014_us_county_5m.zip and
unzipped it within my data subdirectory. With R, it’s easy to
create a subset for just one state, or more; and now I’ve got
a file I can re-use for other state maps by county as well.

There are a lot of files in that newly unzipped subdirectory;
the one you want has the .shp extension. I’ll store the name
of this file in a variable called usshapefile:

usshapefile <- "data/cb_2014_us_county_5m/cb_2014_
us_county_5m.shp"

Several R packages have functions for importing shapefiles
into R. I’ll use tmap’s read_shape(), which I find quite
intuitive:

usgeo <- read_shape(file=usshapefile)

If you want to check to see if the usgeo object looks like
geography of the U.S., run tmap’s quick thematic map
command: qtm(usgeo). This may take a while to load and
appear small and rather boring, but if you’ve got a map of
the U.S. with divisions, you’re probably on the right track.

If you run str(usgeo) to see the data structure within
usgeo, it will look pretty unusual if you haven’t done GIS in
R before. usgeo contains a LOT of data, including columns
starting with @ as well as more familiar entries starting
with $. If you’re interested in the ins and outs of this type
of geospatial object, known as a SpatialPolygonsDataFrame,
see Robin Lovelace’s excellent Creating maps in R tutorial,
especially the section on “The structure of spatial data in R.”

For this tutorial, we’re interested in what’s in usgeo@
data — the object’s “data slot.” (Mapping software will
need spatial data in the @Polygons slot, but that’s nothing
we’ll manipulate directly). Run str(usgeo@data) and that
structure should look familiar - much more like a typical R
data frame, including columns for STATEFP (state FIPS
code), COUNTYFP (county FIPS codes), NAME (in this

http://www.computerworld.com
https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html
https://www.census.gov/geo/maps-data/data/tiger-cart-boundary.html
http://www2.census.gov/geo/tiger/GENZ2014/shp/cb_2014_us_county_5m.zip
http://www2.census.gov/geo/tiger/GENZ2014/shp/cb_2014_us_county_5m.zip
https://github.com/Robinlovelace/Creating-maps-in-R

Advanced beginner’s guide to R

50

C O M P U T E RWO R L D . C O M

case county names, making it easy to match up with county
names in election results).

Extracting geodata just for New Hampshire is similar to
subsetting any other type of data in R, we just need the
state FIPS code for New Hampshire, which turns out to be
33 — or in this case “33,” since the codes aren’t stored as
integers in usgeo.

Here’s the command to extract New Hampshire data using
FIPS code 33:

nhgeo <- usgeo[usgeo@data$STATEFP=="33",]

If you want to do a quick check to see if nhgeo looks
correct, run the quick thematic map function again
qtm(nhgeo) and you should see something like this:

Still somewhat boring, but it looks like
the Granite State with county-sized
divisions, so it appears we’ve got the
correct file subset.

Step 4: Merge spatial and
results data
Like any database join or merge, this
has two requirements: 1) a column
shared by each data set, and 2)
records stored exactly the same way
in both data sets. (Having a county

listed as “Hillsborough” in one file and FIPS code “011” in
another wouldn’t give R any idea how to match them up
without some sort of translation table.)

Trust me: You will save yourself a lot of time if you run a
few R commands to see whether the nhgeo@data$NAME
vector of county names is the same as the nhdata$County
vector of county names.

Do they have the same structure?

str(nhgeo@data$NAME)

Factor w/ 1921 levels “Abbeville”,”Acadia”,..: 1470 684 416
1653 138 282 1131 1657 334 791

str(nhdata$County)

chr [1:11] “Belknap” “Carroll” “Cheshire” “Coos” “Grafton”

http://www.computerworld.com
https://www.census.gov/geo/reference/ansi_statetables.html

Advanced beginner’s guide to R

51

C O M P U T E RWO R L D . C O M

Whoops, problem number one: The geospatial file lists
counties as R factors, while they’re plain character text in
the data. Change the factors to character strings with:

nhgeo@data$NAME <- as.character(nhgeo@data$NAME)

Next, it is helpful to sort both data sets by county name and
then compare.

nhgeo <- nhgeo[order(nhgeo@data$NAME),]

nhdata <- nhdata[order(nhdata$County),]

Are the two county columns identical now? They should be;
let’s check:

identical(nhgeo@data$NAME,nhdata$County)

[1] TRUE

Now we can join the two files. The sp package’s merge
function is pretty common for this type of task, but I like
tmap’s append_data() because of its intuitive syntax and
allowing names of the two join columns to be different.

nhmap <- append_data(nhgeo, nhdata, key.shp =
"NAME", key.data="County")

You can see the new data structure with:

str(nhmap@data)

Step 5: Create a static map
The hard part is done:
Finding data, getting
it into the right format
and merging it with
geospatial data. Now,
creating a simple
static map of Sanders’
margins by county in
number of votes is as
easy as:

qtm(nhmap,
"SandersMarginVotes")

and mapping margins by percentage:

qtm(nhmap, "SandersMarginPctgPoints")

http://www.computerworld.com

Advanced beginner’s guide to R

52

C O M P U T E RWO R L D . C O M

We can see that there’s some difference between which areas
gave Sanders the highest percent win versus which ones
were most valuable for largest number-of-votes advantage.

For more control over the map’s colors, borders and such,
use the tm_shape() function, which uses a ggplot2-like
syntax to set fill, border and other attributes:

tm_shape(nhmap) +
tm_fill("SandersMarginVotes", title="Sanders Margin, Total
Votes", palette = "PRGn") +
tm_borders(alpha=.5) +
tm_text("County", size=0.8)

The first line above sets the geodata file to be mapped,
while tm_fill() sets the data column to use for mapping
color values. The PRGn" palette argument is a ColorBrewer
palette of purples and greens — if you’re not familiar with
ColorBrewer, you can see the various palettes available at
colorbrewer2.org. Don’t like the ColorBrewer choices? You
can use built-in R palettes or set your own color HEX values
manually instead of using a named ColorBrewer option.

There are also a few built-in tmap themes, such as
tm_style_classic:

tm_shape(nhmap) +
 tm_fill("SandersMarginVotes", title="Sanders Margin,
Total Votes", palette = "PRGn") +
 tm_borders(alpha=.5) +
 tm_text("County", size=0.8) +
tm_style_classic()

You can save static maps created by tmap by using the save_
tmap() function:

nhstaticmap <- tm_shape(nhmap) +
 tm_fill("SandersMarginVotes", title="Sanders Margin,
Total Votes", palette = "PRGn") +
 tm_borders(alpha=.5) +
tm_text("County", size=0.8)
save_tmap(nhstaticmap, filename="nhdemprimary.jpg")

http://www.computerworld.com
http://colorbrewer2.org/
https://stat.ethz.ch/R-manual/R-devel/library/grDevices/html/palettes.html

Advanced beginner’s guide to R

53

C O M P U T E RWO R L D . C O M

The filename extension can be .jpg, .svg, .pdf, .png and
several others; tmap will then produce the appropriate
file, defaulting to the size of your current plotting window.
There are also arguments for width, height, dpi and more;
run ?("save_tmap") for more info.

If you’d like to learn more about available tmap options,
package creator Martijn Tennekes posted a PDF
presentation on creating maps with tmap as well as tmap in
a nutshell.

Step 6: Create palette and pop-ups for
interactive map
The next map we’ll create will let users click to see
underlying data as well as switch between maps, thanks to
RStudio’s Leaflet package that gives an R front-end to the
open-source JavaScript Leaflet mapping library.

For a Leaflet map, there are two extra things we’ll want
to create in addition to the data we already have: A color
palette and pop-up window contents.

For palette, we specify the data range we’re mapping and
what kind of color palette we want — both the particular
colors and the type of color scale. There are four built-in
types:

NN colorNumeric is for a continuous range of colors from low
to high, so you might go from a very pale blue all the way
to a deep dark blue, with many gradations in between.

NN colorBin maps a set of numerical data to a set of discreet
bins, either defined by exact breaks or specific number of
bins — things like “low,” “medium” and “high”.

NN colorQuantile maps numerical data into groups where
each group (quantile) has the same number of records —
often used for income levels, such as bottom 20%, next-
lowest 20% and so on.

NN colorFactor is for non-numerical categories where no
numerical value makes sense, such as countries in Europe
that are part of the Eurozone and those that aren’t.

Create a Leaflet palette with this syntax:

mypalette <- colorFunction(palette = "colors I
want", domain = mydataframe$dataColumnToMap)

http://www.computerworld.com
http://von-tijn.nl/tijn/research/presentations/tmap_user2015.pdf
https://cran.r-project.org/web/packages/tmap/vignettes/tmap-nutshell.html
https://cran.r-project.org/web/packages/tmap/vignettes/tmap-nutshell.html
https://rstudio.github.io/leaflet/

Advanced beginner’s guide to R

54

C O M P U T E RWO R L D . C O M

where colorFunction is one of the four scale types above,
such as colorNumeric() or colorFactor and “colors I want”
is a vector of colors.

Just to change things up a bit, I’ll map where Hillary Clinton
was strongest, the inverse of the Sanders maps. To map
Clinton’s vote percentage, we could use this palette:

clintonPalette <- colorNumeric(palette = "Blues",
domain=nhmap$ClintonPct)

where “Blues” is a range of blues from ColorBrewer and
domain is the data range of the color scale. This can be the
same as the data we’re actually plotting but doesn’t have
to be. colorNumeric means we want a continuous range of
colors, not specific categories.

We’ll also want to add a pop-up window — what good is an
interactive map without being able to click or tap and see
underlying data?

Aside: For the pop-up window text display, we’ll want to
turn the decimal numbers for votes such as 0.7865 into
percentages like 78.7%. We could do it by writing a short
formula, but the scales package has a percent() function to
make this easier. Install (if you need to) and load the scales
package:

install.packages("scales")

library("scales")

Content for a pop-up window is just a simple combination
of HTML and R variables, such as:

nhpopup <- paste0("County: ", nhmap@data$County,
"Sanders ", percent(nhmap@data$SandersPct), " - Clinton ",
percent(nhmap@data$ClintonPct))

(If you’re not familiar with paste0, it’s a concatenate
function to join text and text within variables.)

http://www.computerworld.com

Advanced beginner’s guide to R

55

C O M P U T E RWO R L D . C O M

Step 7: Generate an interactive map
Now, the map code:

leaflet(nhmap) %>%
 addProviderTiles("CartoDB.Positron") %>%
 addPolygons(stroke=FALSE,
 smoothFactor = 0.2,
 fillOpacity = .8,
 popup=nhpopup,
 color= ~clintonPalette(nhmap@data$ClintonPct)
)

■■ Basic interactive map created in R and RStudio’s Leaflet package.

Let’s go over the code. leaflet(nhmap) creates a
leaflet map object and sets nhmap as the data source.
addProviderTiles("CartoDB.Positron") sets the
background map tiles to CartoDB’s attractive Positron
design. There’s a list of free background tiles and what they
look like on GitHub if you’d like to choose something else.

The addPolygons() function does the rest — putting the
county shapes on the map and coloring them accordingly.
stroke=FALSE says no border around the counties,
fillOpacity sets the opacity of the colors, popup sets the
contents of the popup window and color sets the palette
— I’m not sure why the tilde is needed before the palette

http://www.computerworld.com
http://leaflet-extras.github.io/leaflet-providers/preview/index.html

Advanced beginner’s guide to R

56

C O M P U T E RWO R L D . C O M

name, but that’s the function format — and what data
should be mapped to the color.

The Leaflet package has a number of other features we
haven’t used yet, including adding legends and the ability
to turn layers on and off. Both will be very useful when
mapping a race with three or more candidates, such as the
current Republican primary.

Step 8: Add palettes for a multi-layer
map
Let’s look at the GOP results in South Carolina among the
top three candidates. I won’t go over the data wrangling on
this, except to say that I downloaded results from the South
Carolina State Election Commission as well as Census
Bureau data for education levels by county. If you download
the project files, you’ll see the initial data as well as the R
code I used to add candidate vote percentages and join all
that data to the South Carolina shapefile. That creates a
geospatial object scmap to map.

There’s so much data for a multi-candidate race that it’s a
little more complicated to choose what to color beyond “who
won.” I decided to go with one map layer to show the winner
in each county, one layer each for the top three candidates
(Trump, Rubio and Cruz) and a final layer showing percent
of adult population with at least a bachelor’s degree. (Why
education? Some news reports out of South Carolina said
that seemed to correlate with levels of Trump’s support;
mapping that will help show such a trend.)

In making my color palettes, I decided to use the same
numerical scale for all three candidates. If I scaled color
intensity for each candidate’s minimum and maximum, a
candidate with 10% to 18% would have a map with the
same color intensities as one who had 45% to 52%, which
gives a wrong impression of the losing candidate’s strength.
So, first I calculated the minimum and maximum for the
combined Trump/Rubio/Cruz county results:

minpct <- min(c(scmap$`Donald J TrumpPct`, scmap$`Marco
RubioPct` , scmap$`Ted CruzPct`))
maxpct <- max(c(scmap$`Donald J TrumpPct`, scmap$`Marco
RubioPct` , scmap$`Ted CruzPct`))

http://www.computerworld.com
http://www.enr-scvotes.org/SC/59148/159531/en/md.html?cid=103
http://www.enr-scvotes.org/SC/59148/159531/en/md.html?cid=103

Advanced beginner’s guide to R

57

C O M P U T E RWO R L D . C O M

Now I can create a palette for each candidate using different
colors but the same intensity range.

trumpPalette <- colorNumeric(palette = "Purples",
domain=c(minpct, maxpct))
rubioPalette <- colorNumeric(palette = "Reds", domain =
c(minpct, maxpct))
cruzPalette <- colorNumeric(palette = "Oranges", domain =
c(minpct, maxpct))

I’ll also add palettes for the winner and education layers:

winnerPalette <- colorFactor(palette=c("#984ea3",
"#e41a1c"), domain = scmap$winner)
edPalette <- colorNumeric(palette = "Blues", domain=scmap@
data$PctCollegeDegree)

Finally, I’ll create a basic pop-up showing the county name,
who won, the percentage for each candidate and percent of
population with a college degree:

scpopup <- paste0("County: ", scmap@data$County,
"Winner: ", scmap@data$winner,
"Trump: ", percent(scmap@data$`Donald J TrumpPct`),
"Rubio: ", percent(scmap@data$`Marco RubioPct`),
"Cruz: ", percent(scmap@data$`Ted CruzPct`),
"Pct w college ed: ", scmap@data$PctCollegeDegree, "% vs
state-wide avg of 25%")

This shows a basic map of winners by county:

leaflet(scmap) %>%
 addProviderTiles("CartoDB.Positron") %>%
 addPolygons(stroke=TRUE,
 weight=1,
 smoothFactor = 0.2,
 fillOpacity = .75,
 popup=scpopup,
 color= ~winnerPalette(scmap@data$winner),
 group="Winners"
) %>%
 addLegend(position="bottomleft", colors=c("#984ea3",
"#e41a1c"), labels=c("Trump", "Rubio"))

http://www.computerworld.com

Advanced beginner’s guide to R

58

C O M P U T E RWO R L D . C O M

■■ Another basic interactive map, this one with
data on more than two candidates.

Step 9: Add map layers and controls
A multi-layer map with layer controls starts off the same as
our previous map, with one addition: A group name. In this
case, each layer will be its own group, but it’s also possible
to turn multiple layers on and off together.

The next step is to add additional polygon layers for each
candidate and a final layer for college education, along with
a layer control to wrap up the code. This time, we’ll store
the map in a variable and then display it:

scGOPmap <- leaflet(scmap) %>%
 addProviderTiles("CartoDB.Positron") %>%
 addPolygons(stroke=TRUE,
 weight=1,
 smoothFactor = 0.2,
 fillOpacity = .75,
 popup=scpopup,
 color= ~winnerPalette(scmap@data$winner),
 group="Winners"
) %>%
 addLegend(position="bottomleft", colors=c("#984ea3",
"#e41a1c"), labels=c("Trump", "Rubio")) %>%

http://www.computerworld.com

Advanced beginner’s guide to R

59

C O M P U T E RWO R L D . C O M

 addPolygons(stroke=TRUE,
 weight=1,
 smoothFactor = 0.2,
 fillOpacity = .75,
 popup=scpopup,
 color= ~trumpPalette(scmap@data$`Donald J TrumpPct`),
 group="Trump"
) %>%

 addPolygons(stroke=TRUE,
 weight=1,
 smoothFactor = 0.2,
 fillOpacity = .75,
 popup=scpopup,
 color= ~rubioPalette(scmap@data$`Marco
RubioPct`),
 group="Rubio"
) %>%

 addPolygons(stroke=TRUE,
 weight=1,
 smoothFactor = 0.2,
 fillOpacity = .75,
 popup=scpopup,
 color= ~cruzPalette(scmap@data$`Ted
CruzPct`),
 group="Cruz"
) %>%
 addPolygons(stroke=TRUE,
 weight=1,
 smoothFactor = 0.2,
 fillOpacity = .75,
 popup=scpopup,
 color= ~edPalette(scmap@
data$PctCollegeDegree),
 group="College degs"
) %>%

 addLayersControl(
 baseGroups=c("Winners", "Trump", "Rubio", "Cruz",
"College degs"),
 position = "bottomleft",
 options = layersControlOptions(collapsed = FALSE)
)

http://www.computerworld.com

Advanced beginner’s guide to R

60

C O M P U T E RWO R L D . C O M

And now display the map with:

scGOPmap

■■ Interactive map with multiple layers. Click on the radio but-
tons at the bottom left to change which layer displays.

addLayersControl can have two types of groups:
baseGroups, like used above, which allow only one
layer to be viewed at a time; and overlayGroups, where
multiple layers can be viewed at once and each turned off
individually.

Step 10: Save your interactive map
If you’re familiar with RMarkdown or Shiny, a Leaflet map
can be embedded in an RMarkdown document or Shiny
Web application. If you’d like to use this map as an HTML
page on a website or elsewhere, save a Leaflet map with the
htmlwidget package’s saveWidget() function:

install.packages("htmlwidgets")
library("htmlwidgets")
saveWidget(widget=scGOPmap, file="scGOPprimary.html")

You can also save the map with external resources such
as jQuery and the Leaflet JavaScript code in a separate
directory by using the selfcontained=FALSE argument and
choosing the subdirectory for the dependency files:

http://www.computerworld.com
http://rmarkdown.rstudio.com/
http://shiny.rstudio.com/

Advanced beginner’s guide to R

61

C O M P U T E RWO R L D . C O M

install.packages("htmlwidgets")
save(widget=scGOPmap2, file="scGOPprimary_withdependencies.
html", selfcontained=FALSE, libdir = "js")

This should get you started on creating your own
choropleth maps with R.

Create a Leaflet map with markers
If you’re not familiar with Leaflet, it’s a JavaScript mapping
package. To install it, you need to use the devtools package
and get it from GitHub (if you don’t already have devtools
installed on your system, download and install it with
install.packages(“devtools”).

devtools::install_github("rstudio/leaflet")

Load the library:

library("leaflet")

Step 1: Create a basic map object and add tiles

mymap <- leaflet()
mymap <- addTiles(mymap)

View the empty map by typing the object name:

mymap

Step 2: Set where you want the map to be centered and its
zoom level:

mymap <- setView(mymap, -84.3847, 33.7613, zoom = 17)
mymap

Add a pop-up:

http://www.computerworld.com

Advanced beginner’s guide to R

62

C O M P U T E RWO R L D . C O M

addPopups(-84.3847, 33.7616, 'Data journalists at work,
NICAR 2015’)

A reminder that the chaining function in R - %>% - takes
the results of one function and sends it to the next one, so
you don’t have to keep repeating the variable name you’re
storing things, similar to the one-character Unix pipe
command. We could compact the code above to:

mymap <- leaflet() %>%
 addTiles() %>%
 setView(-84.3847, 33.7613, zoom = 17) %>%
 addPopups(-84.3847, 33.7616, "Data journalists at work,
NICAR 2015")
View

View the finished product:

mymap

Or if you didn’t want to store the results in a variable for
now but just work interactively:

leaflet() %>%
 addTiles() %>%
 setView(-84.3847, 33.7613, zoom = 16) %>%
 addPopups(-84.3847, 33.7616, 'Data journalists at work,
NICAR 2015’)

Now let’s do something a little more interesting — map
nearby Starbucks locations. Load the starbucks.csv data
set; see data source at: https://opendata.socrata.com/
Business/All-Starbucks-Locations-in-the-US-Map/ddym-zvjk

Data files for these exercises are available on my
NICAR15data repository on GitHub. You can also download
the Starbucks data file directly from Socrata’s OpenData
site in R with the code:

http://www.computerworld.com
https://opendata.socrata.com/Business/All-Starbucks-Locations-in-the-US-Map/ddym-zvjk
https://opendata.socrata.com/Business/All-Starbucks-Locations-in-the-US-Map/ddym-zvjk
https://github.com/smach/NICAR15data

Advanced beginner’s guide to R

63

C O M P U T E RWO R L D . C O M

download.file("https://opendata.socrata.com/api/views/ddym-
zvjk/rows.csv?accessType=DOWNLOAD", destfile="starbucks.
csv", method="curl")

Here’s code to read in the data and make the map:

starbucks <- read.csv("starbucks.csv",
stringsAsFactors = FALSE)
str(starbucks)
atlanta <- subset(starbucks, City == "Atlanta" & State ==
"GA")
leaflet() %>% addTiles() %>% setView(-84.3847, 33.7613,
zoom = 16) %>%
 addMarkers(data = atlanta, lat = ~ Latitude, lng = ~
Longitude,popup = atlanta$Name) %>%
 addPopups(-84.3847, 33.7616, "Data journalists at work,
NICAR 2015")

A script created by a TCU prof lets you create choropleth
maps of World Bank data with a single line of code! More
info here: http://rpubs.com/walkerke/wdi_leaflet

More info on the Leaflet project page: http://rstudio.github.
io/leaflet/

A little more fun with Starbucks data: How many people
are there per Starbucks in each state? Let’s load in a file of
state populations:

statepops <- read.csv("acs2013_1yr_statepop.csv",
stringsAsFactors = FALSE)
A little glimpse at the dplyr library; lots more on that
soon
library(dplyr)

There’s a very easy way to count Starbucks by state
with dplyr’s count function format: count(mydataframe,
mycolumnname)

starbucks_by_state <- count(starbucks, State)

http://www.computerworld.com
http://rpubs.com/walkerke/wdi_leaflet
http://rstudio.github.io/leaflet/
http://rstudio.github.io/leaflet/

Advanced beginner’s guide to R

64

C O M P U T E RWO R L D . C O M

We’ll need to add state population here. You can do that
with base R’s merge or dplyr’s left_join. left_join is faster but
I find merge more intuitive:

starbucks_by_state <- merge(starbucks_by_state, statepops,
all.x = TRUE, by.x="State", by.y="State") # No need to do
by.x and by.y if columns have the same name

better names

names(starbucks_by_state) <- c("State", "NumberStarbucks",
"StatePopulation")

Add new column to starbucks_by_state with dplyr mutate
function, which just means alter the data frame by adding
one or more columns. Then we’ll store in a new dataframe,
starbucks_data, so as not to mess with the original.

starbucks_data <- starbucks_by_state %>%

 mutate(
 PeoplePerStarbucks = round(StatePopulation /
NumberStarbucks)
) %>%
 select(State, NumberStarbucks, PeoplePerStarbucks) %>%
 arrange(desc(PeoplePerStarbucks))

Again the %>% character, so we don’t have to keep writing
things like:

starbucks_data <- mutate(starbucks_by_state,
PeoplePerStarbucks = round(StatePopulation /
NumberStarbucks))
starbucks_data <- select(starbucks_data, State,
NumberStarbucks, PeoplePerStarbucks)
starbucks_data <- arrange(starbucks_data,
desc(PeoplePerStarbucks))

More mapping resources

A script created by a TCU prof lets you create choropleth
maps of World Bank data with Leaflet a single line of code!
More info here: http://rpubs.com/walkerke/wdi_leaflet

http://www.computerworld.com
http://rpubs.com/walkerke/wdi_leaflet

Advanced beginner’s guide to R

65

C O M P U T E RWO R L D . C O M

You can do considerably more sophisticated GIS work with
Leaflet and R.

Draw circles with a 2km radius around each marker, for
example. Tutorial by TCU assistant prof Kyle Walker http://
rpubs.com/walkerke/rstudio_gis

More info about Leaflet on the Leaflet project page http://
rstudio.github.io/leaflet/

Extract custom data from the Google
Analytics API
Google Analytics provides a robust API that enables you
to tap into your data programmatically, meaning you can
conveniently pull and package data in ways that might
not be as easy to do on the Web. Google has tutorials that
cover how to use this feature with Java, Python, PHP and
JavaScript, but I prefer to tap into Google Analytics with R,
a language that’s specifically designed for data visualization
and graphical analysis.

There are several R packages available that have functions
specifically designed for Google Analytics, including
ganalytics, RGoogleAnalytics and rga (“R Google
Analytics”). I’ll be using rga for this tutorial, but any of
them would work.

Step 1: Install packages

Like ganalytics, rga resides on GitHub. To easily install any
of the Google Analytics packages from GitHub, first install
and load the R package devtools by typing the following
commands into the R console window:

install.packages("devtools")

library(devtools)

Then install and load rga from package author Bror
Skardhamar’s account:

install_github("skardhamar/rga")

library(rga)

(You only have to run the first three commands once per
machine, but you need to load library(rga) each time you
open R.)

http://www.computerworld.com
http://rpubs.com/walkerke/rstudio_gis
http://rpubs.com/walkerke/rstudio_gis
http://rstudio.github.io/leaflet/
http://rstudio.github.io/leaflet/
https://developers.google.com/analytics/solutions/articles/hello-analytics-api#select_language
https://github.com/jdeboer/ganalytics
https://code.google.com/p/r-google-analytics/
https://github.com/skardhamar/rga
https://github.com/skardhamar
https://github.com/skardhamar

Advanced beginner’s guide to R

66

C O M P U T E RWO R L D . C O M

Step 2: Allow rga to access your Google Analytics account

On a Mac, authentication is as easy: Create an instance of
the Google Analytics API authentication object by typing
the following in your R console window:

rga.open(instance="ga")

That will open a browser window that asks you to give rga
permission to access your Google data. When you accept,
you’ll be given a code to cut and paste back into your R
console window where it says, “Please enter code here.”

In Windows, I find that adding a line of code before opening
an rga instance helps with any authentication errors:

options(RCurlOptions = list(cainfo = system.
file("CurlSSL", "cacert.pem", package = "RCurl")))

rga.open(instance="ga")

Next, you need to find the profile ID for your Google
account, which is not found in the tracking code that you
add to a website to allow Google Analytics to monitor your
site. Instead, on your Google Analytics Admin page, go to
View Settings and you’ll see the ID under “View ID.”

NN You’ll find your profile ID for your Google account by
going to View Settings on your Google Analytics Admin
page.

Or, run the command:

ga$getProfiles()

in your R terminal window to get a list of all available
profiles in your account; the profile ID will be listed in the
first column.

http://www.computerworld.com

Advanced beginner’s guide to R

67

C O M P U T E RWO R L D . C O M

Whichever way you find it, save that value in a variable so you
don’t have to keep typing it. You can use a command like:

id <- "1234567"

(Replace the number with your actual ID, and make sure to
put it between quote marks.) This stores your profile ID as
the variable “id.”

Step 3: Extract data

Now we’re ready to start pulling some data using the ga
instance we just created. The getData method will actually
extract data from your Google Analytics account that you
can then store in another new R variable. If you want to see
all available methods for your ga object, run:

ga$getRefClass()

You can query the Google API for metrics and dimensions.
Metrics are things like page views, visits and organic
searches; dimensions include information like traffic
sources and visitor type. (See Google’s Dimensions Metrics
Reference for full details.)

In addition, you can focus your query by criteria like visits
from search, visits with conversions (assuming you’ve set
that up in Google Analytics beforehand) and even visits just
from tablets, by including segments in a query. Finally, you
can also create your own filters to narrow your results.

■■ Google’s Query Explorer helps you figure out what
data is available and how to structure a query.

http://www.computerworld.com
https://developers.google.com/analytics/devguides/reporting/core/dimsmets
https://developers.google.com/analytics/devguides/reporting/core/dimsmets
https://developers.google.com/analytics/devguides/reporting/core/v3/reference#filters

Advanced beginner’s guide to R

68

C O M P U T E RWO R L D . C O M

Google has created a Query Explorer for the Google
Analytics API. It’s a great resource to help you figure out
what data is available and how to structure a query. If
you’re new to the Google Analytics API, play around with
Query Explorer for a bit to see what data you can extract
and the variables you need to pull the data you want.
Further information on the terms to use for various queries
is available in the API documentation.

Once you decide on what you’d like to include in your query,
here’s the syntax for using R to get the data:

myresults <- ga$getData(id, start.date="", end.
date="",

metrics = "",

dimensions = "",

sort = "",

filters = "",

segment = "",

start = 1,

max = 1000)

You fill in information for your specific query between the
various quotation marks, of course. Note that dates are in
the format yyyy-mm-dd, such as “2013-10-30.”

Here’s a specific example: Say I want to see the top ten
referrers for visits to my site in September. My start date
is September 1 and my end date is September 30. My
metric is visits — called “ga:visits” by the API — and my
dimension is their sources — called “ga:source.”

I’ll further refine the query to get just my top 10 referrers:

myresults <- ga$getData(id, start.date="2015-09-01",
end.date="2015-09-30",

metrics = "ga:visits",

dimensions = "ga:source",

sort = "-ga:visits",

start = 1, max = 10)

Here’s a breakdown of that query:

http://www.computerworld.com
http://ga-dev-tools.appspot.com/explorer/
http://ga-dev-tools.appspot.com/explorer/
https://developers.google.com/analytics/devguides/reporting/core/v3/

Advanced beginner’s guide to R

69

C O M P U T E RWO R L D . C O M

NN ga$getData is using the getData method of my ga Google
Analytics API-accessing object.

NN The first argument, id, is the profile number for my
account, which I already stored in a variable called id.

NN Next are the start and end dates for my query, followed by
the metric I want ("ga:visits")).

NN Since I want to know the visits by source, I specify the
dimension as "ga.source".

NN I only want the top 10 referrers, so I need to sort the
ga:visits results in descending order. I do that on the
next line by putting a minus sign in front of ga:visits
when setting the sort criteria.

NN Finally I specifically ask to start at the first result with a
maximum of 10 to return at most 10 listings.

The results are stored in the variable myresults. Type

myresults

at the R prompt in your R terminal window to see what
data has been returned.

■■ The results from a query searching for a site’s top 10 referrers.

If I wanted to see the overall number of visits without
breaking it down by source, I wouldn’t include the
dimensions, sort, start or max in the query. Instead, I’d just
use a simple:

myresults <- ga$getData(id, start.date="2015-09-01",
end.date="2015-09-30", metrics = "ga:visits")

Note that if you are trying to copy and paste, in R you can’t
break a variable or other name at the . onto separate lines,
or have a date break in mid-date at a hyphen.

That returns a listing of number of visits per day. I can have
it return results by different time periods by adding the
time dimension of my choice — for example by week:

http://www.computerworld.com

Advanced beginner’s guide to R

70

C O M P U T E RWO R L D . C O M

myresultsPVsByWeek <- ga$getData(id, start.
date="2013-09-01", end.date="2013-09-30",

metrics = "ga:visits",

dimensions = "ga:week")

Or, I can get page views for the entire year by month:

myresultsPVsByMonth <- ga$getData(id, start.
date="2013-01-01", end.date="2013-12-31",

metrics = "ga:pageviews",

dimensions = "ga:month")

You can seek more than one metric at a time:

myresultsPVsVisits <- ga$getData(id, start.
date="2013-01-01", end.date="2013-12-31",

metrics = "ga:visits, ga:pageviews",

dimensions = "ga:month")

(For those who know R and are used to combining items
using R’s concatenate c() function, you don’t use that when
combining items within a ga$getData query.)

Want to just see visits that came from, say, Google News
each month this year? Add a filter, such as:

myresultsGNvisits <- ga$getData(id, start.date =
"2013-01-01", end.date = "2013-12-31",

metrics = "ga:visits",

filters = "ga:source=~news.google.com",

dimensions = "ga:month")

I used =~ rather than == because the latter would set
the filter to only those referrals that exactly equal news.
google.com. By using the =~ operator instead, it uses
more powerful regular expression searching, which in this
case would match anything containing news.google.com.
(Regular expressions allow much more robust pattern
searching.)

As before, for each of these queries, type:

myresults

(or the appropriate results variable) at the prompt in your R
window to see what’s returned.

http://www.computerworld.com
https://support.google.com/analytics/answer/1034324?hl=en

Advanced beginner’s guide to R

71

C O M P U T E RWO R L D . C O M

■■ The query has been refined to show the visits that
came from Google News each month for a year.

Step 4: Manipulate your data

Now that you’ve got your data, what can you do with it?

If you’re not an R enthusiast, the easiest thing is to save
the results to a CSV file. R’s write.csv() function first lists
what you want to save and then the file name. To save the
myresults variable to a file called data.csv, type:

write.csv(myresults, file="data.csv", row.
names=FALSE)

The optional row.names=FALSE eliminates an extra column
with the row numbers, just to keep the file uncluttered. The
resulting file looks something like this (but hopefully with
many more visits):

"month","visits"

"01",625

"02",790

"03",395

"04",219

"05",927

"06",151

"07",231

"08",244

"09",231

You can then use that data in the spreadsheet or graphing
program of your choice.

http://www.computerworld.com

Advanced beginner’s guide to R

72

C O M P U T E RWO R L D . C O M

You can also analyze your data right within R, of course,
without exporting to a spreadsheet. Let me first pull some
real data — visits and page views — from a personal site I
set up years ago that I no longer tend to but that still gets
occasional visitors:

mydata <- ga$getData(id, start.date="2013-01-01",
end.date="2013-12-31",

metrics = "ga:visits, ga:pageviews",

dimensions = "ga:month")

■■ Data on monthly visits to a site.

You can use R’s str() function to find out how the mydata
object is structured.

■■ This shows how the mydata object is structured.

Like the other results above, it’s an R data frame with
character strings as the month number and numbers for
the data. That makes it easy to run simple analyses and
generate basic graphs within R, such as:

barplot(mydata$visits, main="Visits by month",
xlab="Month", names.arg=mydata$month, las=1,
col=rainbow(9))

http://www.computerworld.com
http://www.computerworld.com/s/article/9239672
http://www.computerworld.com/s/article/9239723

Advanced beginner’s guide to R

73

C O M P U T E RWO R L D . C O M

■■ You can generate basic graphs within R, such as this one,
which shows the number of visits to a site for each month.

The R barplot() command above uses the number
of visits for the graph’s y axis values (you can refer
to a specific column in a data frame with the syntax
dataframename$columnname) and names.arg as names
on the x axis. The command main specifies the graph
title, xlab is the x-axis label and col=rainbow(9) tells R
to choose nine colors from its rainbow palette to color the
bars. The nonintuitive command las=1 tells R to set both
the x- and y-axis labels horizontally (0 makes them parallel
to the axis, 2 perpendicular to the axis, and 3 vertical).

More R Resources
For more resources to help improve your R skills, see
Computerworld’s 60+ R resources.

http://www.computerworld.com
http://www.computerworld.com/article/2497464/business-intelligence/business-intelligence-60-r-resources-to-improve-your-data-skills.html

