
Copyright © 2016 InfoWorld Media Group. All rights reserved. • $79

DeepDive
T

H
IN

K
S

T
O

C
K

THE POWER OF 	
 POWERSHELL

Essential tips Windows admins will love

Deep Dive

InfoWorld.com DEEP DIVE SERIES 2PA A S

The power of
PowerShell:
Essential tips
Windows admins
will love

Deep Dive

2InfoWorld.com DEEP DIVE SERIES T H E P OW E R O F P OW E R S H E L L

Make the most of
Microsoft’s command
line by mastering
the nuances of the
PowerShell language.
BY ADAM BERTRAM

Until recently, a clear delineation existed between

Windows system administrators and developers. You’d never

catch a system administrator writing a single line of code, and

you’d never catch a developer bringing up a server. Neither

party dared to cross this line in Windows environments. Nowa-

days, with the devops movement spreading like wildfire, that

line is fading away.

A basic premise of devops is automation, which allows us

to maintain consistent, repeatable processes while removing

the error-prone ways of our being human. The only way

to automate is through the command line. If you’re in a

Windows environment, the command line to use is Power-

Shell. Once considered an inferior command-line experience to

Linux, Windows now touts a very powerful and functional command line through PowerShell.

PowerShell can be a daunting tool to master for Windows admins used to working with the GUI.

But as I will show in this Deep Dive, adding even a little PowerShell into your daily mix can save a ton

of effort.

Here, I’m going to concentrate on some of the fundamentals of PowerShell as a language to help

you take your PowerShell skills to the next level. I won’t cover technology-specific topics like how to

manage Active Directory, Exchange, or IIS, nor will I cover specific PowerShell cmdlets. Instead, I will

drill into the semantics of the language to show a few key techniques that you can put into your

scripts today. Follow along and let’s make your PowerShell scripts the best they can be.

Deep Dive

InfoWorld.com DEEP DIVE SERIES 3PA A S

Splatting,
introduced in
PowerShell
Version 2,
allows you to
define all of
your param-
eters up front in
a much easier-
to-read format.

Splatting
PowerShell code is executed using commands such as cmdlets or functions. To increase their reuse

value, commands typically employ parameters. Rather than requiring you to overspecify a custom

function like Get-ContentFromFileXYZ.TXT and Get-ContentFromFileABC.TXT,

PowerShell offers a Path parameter on its Get-Content cmdlet. Parameters, like Path, are typically

passed to functions and cmdlets with a dash, followed by the parameter name, a space, and the

parameter argument or value:

Get-Content –Path C:\FileABC.txt

But cmdlets and functions like Get-Content often support several parameters, and before long,

you may be typing commands like this:

Get-Content -Path C:\MyText.txt -ReadCount 1 -TotalCount 3 -Force
-Delimiter “,” -Filter ‘*’ -Include * -Exclude ‘a’

Here, eight parameters are being passed to Get-Content, and it’s clearly getting hard to read, to

the point where confusion can arise in discerning the parameter from the value you’re passing into

the argument. Any time you use multiple parameters, it’s wise to opt for another method of passing

parameters to commands with the funny name of splatting.

Splatting, introduced in PowerShell Version 2, allows you to define all of your parameters up front

in a much easier-to-read format.

Let’s take that long, complicated set of parameters and see how all of them can be passed to

Get-Content using splatting.

$getContentParameters = @{
 ‘Path’ = ‘C:\MyText.txt’
 ‘ReadCount’ = 1
 ‘TotalCount’ = 3
 ‘Force’ = $true
 ‘Delimiter’ = ‘,’
 ‘Filter’ = ‘*’
 ‘Include’ = ‘*’
 ‘Exclude’ = ‘a’
}
Get-Content @getContentParameters

Though I was forced to use more lines it’s plain to see this method is much more readable than

jamming them all on a single line. I also chose to line up the “=” statements by using tabs to have all

of the parameter arguments lined up.

The $getContentParameters variable defined in the first line is a hashtable. You can see this

by the @{}. Inside, each key represents the parameter, and each value represents the parameter argu-

ment or value. One item to note in this example is the Force parameter. You’ll notice when Force

was used on one line it wasn’t technically equal to anything. This is because it is a type of switch. A

switch parameter has no value and is simply used as a flag. Since hashtables require a value for each

key, you must make any switch parameter used equal to a Boolean $true value.

Once you’ve defined the hashtable you then pass the entire variable to the command using the

ampersand to represent a splatting variable. Get-Content will then process the commands exactly as

if you’d passed them the traditional way with dashes.

Deep Dive

T H E P OW E R O F P OW E R S H E L L InfoWorld.com DEEP DIVE SERIES 3

Deep Dive

InfoWorld.com DEEP DIVE SERIES 4T H E P OW E R O F P OW E R S H E L L

This is a much cleaner way to pass arguments to commands, and I encourage its use whenever

multiple parameters are in play.

Calculated properties
One of the biggest advantages of using PowerShell is that everything is an object. Objects have proper-

ties, but sometimes you may not want to get only the default property names on an object. Maybe

you’d like to add another property, add text to an existing string property, or perform arithmetic on an

integer property. You could send that property to a variable and make your necessary changes, but that

requires another line and, depending on the complexity, can become unreadable real quick.

For example, let’s say I want to test the network connectivity of a computer and get some common

properties. To do this, I’ll use the Test-NetConnection cmdlet.

Test-Connection -ComputerName localhost -Count 1 |
 Select-Object IPv4Address,ResponseTime,TimeToLive

This is great, but maybe I want to put this into a CSV report. As part of the CSV report, I’m reading

server names from a text file. I’d like to include the server name as well as the properties I’ve shown

above. I start out by reading the text file, but I don’t have the server names that were in the text file.

I need to add another property to this to correlate the IP with the server name. This is a job for

calculated properties. Since this requires additional code, I will now move into a script rather than show

you examples directly from the console.

The output will now include our new custom property called ServerName.

I had to change the code quite a bit so allow me to break it down. First, notice how I moved the

original properties being passed to Select-Object (IPV4Address,ResponseTime,TimeTo
Live) above, then passed $selectProperties to Select-Object that way. This was simply

to reduce the length of the line. It behaves exactly the same as if I simply passed them directly to

Select-Object as I did in the console previously.

What functionality did change was the addition of another property in $selectProperties

to pass to Select-Object. Notice it wasn’t a string like the others but a hashtable with two

elements inside: Name and Expression. This is called a calculated property. This is how using

Select-Object you can essentially create properties on the fly. Every property you’d like to add has

to be in a hashtable with a Name and Expression as key names. The Name key’s value is the name

you’d like to call the object property. The Expression key’s value always has to be a script block.

Deep Dive

InfoWorld.com DEEP DIVE SERIES 5

Objects abound
in PowerShell,
and it only
makes sense for
us to be able to
create our own
objects from
scratch.

T H E P OW E R O F P OW E R S H E L L

Notice $serverName is enclosed in curly braces. This is how $serverName can be expanded to the

actual server names as each server is tested in the text file.

This can be used not only to create new properties but to modify existing properties as well. Maybe

I’d like to append a ms label to all the TimeToLive properties to signify the number is in milliseconds.

Instead of specifying the name of the TimeToLive property I would instead create a hashtable and

concatenate the foreach pipeline value of TimeToLive represented by $_.TimeToLive with ms

to create a single string.

Using calculated properties with Select-Object are very convenient but beware: They come

with a performance hit. I don’t recommend using calculated properties if you’re working with large

data sets as it can drastically slow down your script. But if you have fairly small data sets with 100 or

fewer elements the performance hit will be minimal.

Custom object creation
Objects abound in PowerShell, and it only makes sense for us to be able to create our own objects

from scratch. Fortunately, PowerShell provides us with a few different ways to do that. In this tip, I’ll

cover three methods to create custom objects.

In PowerShell, an object is of a specific type. When creating custom objects, the most common

type of object type is System.Management.Automation.PSCustomObject. This is the kind of

object we’ll create in this article. Also, an object has one or more properties of various types. In this

article, we’ll focus on NoteProperty types.

One of the oldest ways to create a custom object that works on all versions of PowerShell

is via the New-Object cmdlet. To create a blank custom object of type System.Management.
Automation.PSCustomObject with no properties using New-Object you’d simply call New-
Object and specify the TypeName parameter of PSObject.

$object = New-Object –TypeName PSObject

Deep Dive

InfoWorld.com DEEP DIVE SERIES 6T H E P OW E R O F P OW E R S H E L L

 This doesn’t do us any good, however, because it contains no properties. To add properties, we

can use the Add-Member cmdlet. This cmdlet essentially binds a new member (or property) to an

existing object similar to the one we created.

$object | Add-Member –MemberType NoteProperty –Name MyProperty –Value
SomeValue

You can see that Add-Member has a MemberType parameter. As I mentioned earlier, when

creating your own objects you will typically use the NoteProperty type here. At this point, you

simply need to specify the name of the property and the value that the property will hold.

From here, you can repeat adding as many properties as you’d like using Add-Member.

Next, rather than using Add-Member you can specify all your properties up front in a hashtable

and pass those properties to New-Object.

$properties = @{ ‘MyProperty1’ = ‘Value1’; ‘MyProperty2’ = ‘Value2’ }
$object = New-Object –TypeName PSObject –Property $properties

Finally, as of PowerShell v3, we can use the [pscustomobject] type accelerator. Occasionally,

the PowerShell team will create what’s called type accelerators. These are convenient shortcuts to create

objects of particular types. Since creating custom types are so common in PowerShell, they decided to

create one for creating them. Nowadays, this is the most common way to create custom objects.

To create custom objects with the [pscustomobject] type accelerator you’ll first need to create

a hashtable with property names as key names and their values as the hashtable values. Let’s reuse the

hashtable we created earlier.

$properties = @{ ‘MyProperty1’ = ‘Value1’; ‘MyProperty2’ = ‘Value2’ }
Now, instead of using the New-Object cmdlet and specifying the type and properties we can

simply cast that hashtable directly to a custom object simply by “declaring” the hashtable as a custom

object type.

[pscustomobject]$properties

You’ll see it’s a much faster way to create a custom object. I recommend this approach when

working with PowerShell v3 or later. It’s, by far, the easiest to remember and is the most readable.

In this tips and tricks article, we were able to cover a few language-specific concepts in PowerShell.

Replicate what I’ve done, tinker around, use the Get-Member cmdlet to explore the custom objects

further. PowerShell has so much more to offer from a language perspective. If you’re new to Power-

Shell I recommend checking out the book “PowerShell in a Month of Lunches.” It addresses the topics

we’ve discussed here but covers much more of PowerShell and takes a well-rounded approach to

learning the language.  n

https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-second-edition

Deep Dive

InfoWorld.com DEEP DIVE SERIES 7T H E P OW E R O F P OW E R S H E L L

In this increasingly
devops-minded

world, automation
is king. Here’s how
to get started with

PowerShell.
BY ADAM BERTRAM

An intro for Windows
Server admins

If you’re a Windows system administrator you’ve probably been clicking buttons, dragging

windows, and scrolling scroll bars for a long time. Using the GUI — even on a server — has been

common in the Windows world. We thought nothing of firing up a remote desktop client and logging

into a server to do our bidding. This might be OK for very small businesses with only a couple servers,

but enterprises soon realized this approach doesn’t scale. Something else had to be done. The solution

was to turn to scripts to automate as much of this management as possible. With the introduction of

PowerShell, sys admins now had a tool to make it happen.

Here we provide a hands-on introduction to what Windows system administrators can accomplish

using PowerShell in an increasingly devops-minded world. So roll up your sleeves, fire up PowerShell,

and follow along.

Event log querying across servers
One task I struggled with as an IT pro was automating the reading of event logs. Windows event

logs contain a ton of useful information. The problem is getting to all the data and collating it into a

meaningful form. Using PowerShell cmdlets like Get-WinEvent and Get-EventLog, I could finally

gather information from one to 1,000 servers with relative ease.

Before we start writing our code, we need to figure out what events we want to retrieve. For

the purposes of this introduction, I’ll be searching for event ID 6005 in my servers’ System event log.

Why that ID? Because the ID is used to indicate when a server has started. If you want to search for a

different event, you can easily switch out this ID for one that represents your desired event.

Before I can start pulling these events from all my servers, I first need to know how to do it on a

single server. There are a few cmdlets that can do this, such as Get-EventLog and Get-WinEvent.

T
H

IN
K

S
T

O
C

K

Deep Dive

InfoWorld.com DEEP DIVE SERIES 8T H E P OW E R O F P OW E R S H E L L

I’m going to use Get-WinEvent. This cmdlet is typically faster and allows you to perform more

advanced filtering. It is a little harder to get a handle on than Get-EventLog, but I believe a more

thorough understanding of Get-WinEvent pays off in the long run.

Use Get-WinEvent
To retrieve information about events on remote computers we need to use the -ComputerName

parameter. Because servers produce multiple event logs, we’ll then need to narrow that down by the

System event log and finally the event ID. Get-WinEvent offers a few options for filtering, but the

easiest to use is the -FilterHashTable parameter. By using the LogName and ID as hashtable

keys we can easily narrow down what kind of events will be retrieved.

Get-WinEvent -FilterHashtable @{LogName = ‘System’; ID = 6005}
-ComputerName labdc.lab.local

You can see in the screenshot above that I’m querying the labdc.lab.local computer and I

can see three events with the ID of 6005.

Expand the search to more servers
As you can see, finding all instances of an event ID on a single server is easy, but what about multiple

servers? One way is to use a simple text file listing all of your server names. If you have Active Directory

up and running, you can easily use Get-AdComputer to pull necessary server names as well.

For this introduction, I’ll use a text file, from which the Get-Content cmdlet can pull out all of

my server names into a variable.

You can see I have three servers in the text file. I’d like to store all of these server names in a

variable to reference in a minute, so I’ll create one called $Servers.

$Servers = Get-Content -Path C:\Servers.txt

Now I can check each one of those servers by placing that Get-WinEvent line we defined

earlier inside of a foreach loop where we iterate over each line in the C:\Servers.txt file.

Although this time, instead of specifying the name of an individual server, I’m using the variable $s.

This represents each server name as it’s processed in $Servers.

foreach ($s in $Servers) {
 Get-WinEvent -FilterHashtable @{LogName = ‘System’; ID = 6005}
-ComputerName $s
}

Deep Dive

9T H E P OW E R O F P OW E R S H E L L InfoWorld.com DEEP DIVE SERIES

When you run this you’ll get something that looks like this. Not every helpful, right? Which servers

did these events come from? We’ll need to add a bit more code to get the output just right.

By default, PowerShell tries to be helpful by showing you only what it thinks are the essentials.

However, sometimes you need to see more, as is the case here, because what you’re seeing from

Get-WinEvent is not the true output. You’re only seeing what PowerShell is configured to output

to the console. To see all of the properties that come out of Get-WinEvent you’ll need to use the

Select-Object cmdlet or select as it is aliased.

Be selective on properties with Select-Object
Get-WinEvent -FilterHashtable @{LogName = ‘System’; ID = 6005} - ComputerName
labdc.lab.local | select -First 1 *

Using the -First parameter to Select-Object (here as the alias select) returns the first

event record on the System event log of computer labdc.lab.local, and the asterisk at the end of

the command allows me to see all the properties, not only the ones PowerShell displays to the console by

default. Notice that there’s a property called MachineName? This is exactly what we need in our output.

Deep Dive

1 0

foreach ($s in $Servers) {
 $getWinEventParams = @{
 ‘FilterHashTable’ = @{LogName = ‘System’; ID = 6005}
 ‘ComputerName’ = $s
 }
 Get-WinEvent @getWinEventParams | Select-Object
TimeCreated,MachineName
}

By using the Select-Object cmdlet to manipulate the output from Get-WinEvent I can now

limit our output to the TimeCreated and MachineName properties. Notice in my screenshot some

odd-looking machine names? That was when the server I’m querying was named something else.

I don’t really care what the server was named a long time ago. It looks like I might not be able to use

the MachineName property. Instead, I’ll use the value of $s to ensure I get a consistent server name.

T H E P OW E R O F P OW E R S H E L L InfoWorld.com DEEP DIVE SERIES

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 1T H E P OW E R O F P OW E R S H E L L

foreach ($s in $Servers) {
 $getWinEventParams = @{
 ‘FilterHashTable’ = @{LogName = ‘System’; ID = 6005}
 ‘ComputerName’ = $s
 }
 Get-WinEvent @getWinEventParams | Select TimeCreated,@
{n=’MachineName’;e = {$s}}
}

Yay! Now I don’t see those old names in there. I only have to change the MachineName property

by using a calculated property. This allowed me to create a new MachineName property with a value

of my choosing.

Also, you’ll notice that I created a $getWinEventParams variable and passed that to

Get-WinEvent instead of passing those parameters individually. This is a method called splatting

that allows you to pass parameters to cmdlets, rather than having to pass all of them on a single line.

It’s a clean way of passing parameters to commands in PowerShell.

Build a server inventory report: A lesson in CIM
Dozens of tools on the market today can inventory your servers. These range from expensive, full-blown

suites like Microsoft System Center Configuration Manager, Altiris, and the rest to absolutely free tools.

These work, of course, but what if you don’t want to spend time learning a new piece of software or simply

need to quickly query something from a few servers? Maybe you have specific requirements and the tool

you usually use can’t meet that requirement. You can use PowerShell instead.

Before we begin coding, let’s determine what we need pulled from each of the servers. For this

example, I’ll pull the following information from each server.

1. Operating system

2. Total memory

3. Processor name and speed

4. Total disk space on the C: drive

https://technet.microsoft.com/en-us/library/ff730948.aspx
https://technet.microsoft.com/en-us/library/jj672955.aspx

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 2T H E P OW E R O F P OW E R S H E L L

The Active Directory module
Also, because the Active Directory cmdlets do not come with PowerShell out of the box I’ll need to

download and install Remote Server Administration Tools (RSAT). This will give me the Active Directory

module.

Again, as with the event log report we gathered, we’ll need a way to get a list of server names.

Rather than use a text file, let’s get these names from Active Directory (AD). For today, I want to gather

some information on all of my global catalog servers in my AD forest.

This is a walk in the park using the Get-ADforest cmdlet.

Let’s assign those servers to a variable again.

$Servers = (Get-ADForest).GlobalCatalogs

Introducing CIM
Now that we have our list of servers, how do we pull our target information? For this, we’ll need

to understand a little about Common Information Model (CIM). Every Windows machine has a CIM

repository. This repository holds hundreds of classes. Each of these classes contains object properties.

One way to query these classes is through the Get-CimInstance cmdlet. This is a newer cmdlet

that uses PSRP (PowerShell remoting protocol). This means you must have WinRM enabled and available

on all of your servers. I’m using all Windows Server 2012 R2 servers configured to have WinRM

available in my demonstrations, so your mileage may vary.

The four attributes I am looking for exist in different CIM classes on each of my servers. To save

time in tracking these down, here’s the breakdown:

1. Operating system ——> Win32_OperatingSystem
2. Total memory ——> Win32_PhysicalMemory
3. Processor name and speed ——> Win32_Processor
4. Total disk space on C: drive ——> Win32_LogicalDisk

To query each of these classes I’ll use the Get-CimInstance cmdlet. This command has two

parameters we’ll need to use: -ClassName and -ComputerName. You can use Get-CimInstance

as demonstrated below.

Let’s see if we can get the operating system name. Notice how I queried the Win32_OperatingSystem

class above, but you don’t see the operating system name? What gives? As with the

Get-WinEvent cmdlet we went over earlier, Get-CimInstance also does not show the “real”

output. However, in this instance we won’t use the Select-Object cmdlet. Instead, Get-CimIn-
stance has a -Property parameter where we can specify an asterisk to see all of the properties.

Get-CimInstance -ClassName Win32_OperatingSystem -ComputerName labdc.lab.local
-Property *

https://www.microsoft.com/en-us/download/details.aspx?id=45520
https://technet.microsoft.com/en-us/magazine/ff700227.aspx

Deep Dive

1 3T H E P OW E R O F P OW E R S H E L L InfoWorld.com DEEP DIVE SERIES

Once you do this, if all goes well, you should see an output with lots of different property names,

including one called Caption, which contains the name of the operating system.

Now that I know the property name, I can limit our output to displaying the Caption property

alone, with no need for the -Property parameter anymore. That was only needed to check out

the values.

(Get-CimInstance -ClassName Win32_OperatingSystem -ComputerName
labdc.lab.local).Caption

This same methodology applies to all of the other attributes we need to retrieve. To find the processor

we’ll use the Name property on the Win32_Processor class.

(Get-CimInstance -ClassName Win32_Processor -ComputerName
labdc.lab.local).Name

The same goes for Win32_PhysicalMemory and Win32_LogicalDisk with one caveat. If you try

to retrieve the total memory on a server using the Capacity property you’ll get the total bytes back. For

example, if I have 1GB in a demo server, it will show up as 1073741824. That’s not very intuitive. I’d like

to get that back in gigabytes. Luckily, this is easy to do in PowerShell. Simply divide total bytes by 1GB.

Put it all together
Now that you have an understanding of how to retrieve this information on a single server, let’s put it

all together in a foreach loop to query each of our servers.

$Servers = (Get-ADForest).GlobalCatalogs
foreach ($Server in $Servers) {
 $Output = @{‘Name’ = $Server }
 $Session = New-CimSession -Computername $Server
 if ($Session) {
 $Output.OperatingSystem = (Get-CimInstance -CimSession $Session
-ClassName Win32_OperatingSystem).Caption
 $Output.Memory = (Get-CimInstance -CimSession $Session
-ClassName Win32_PhysicalMemory).Capacity / 1GB
 $Output.CPU = (Get-CimInstance -CimSession $Session -ClassName
Win32_Processor).Name
 $Output.FreeDiskSpace = (Get-CimInstance -CimSession $Session
-ClassName Win32_LogicalDisk -Filter “DeviceID = ‘C:’”).FreeDiskSpace /
1GB

Deep Dive

1 4InfoWorld.com DEEP DIVE SERIES T H E P OW E R O F P OW E R S H E L L

 Remove-CimSession $Session
 [pscustomobject]$Output
 }
}

Notice that I used the New-CimSession cmdlet. Instead of the -ComputerName parameter on

each Get-CimInstance line, I use the -CimSession parameter instead. This is for performance

reasons. Every time Get-CimInstance runs with the -ComputerName parameter it creates a

temporary new CIM session on the remote computer. Since I need to make multiple calls to CIM,

I can simply create a single CIM session for each server and repeatedly use that single session.

It’s more efficient and faster.

Also notice the $Output hashtable variable. Since it’s not possible for me to gather all of

these attributes with a single command I have to store the results in a variable for each server.

Then, once I am done with the server I convert the $Output hashtable to a custom object.

If the stars align, you should get an output similar to this.

This was a tiny sample of how you can use PowerShell as a Windows sys admin. There are tons of

other opportunities where PowerShell can be used. I encourage you to see them out, learn more about

PowerShell, and find out where it can take you and your career.

If you are interested in any of the code demonstrated in today’s article, feel free to download it

from my GitHub repository. GitHub is where I share all of my PowerShell content. You’ll find everything

we covered today there and much more about PowerShell.  n

http://www.jonathanmedd.net/2011/09/powershell-v3-creating-objects-with-pscustomobject-its-fast.html
https://github.com/adbertram/Session-Content/tree/master/Articles/InfoWorld
https://github.com/adbertram/Session-Content/tree/master/Articles/InfoWorld

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 5T H E P OW E R O F P OW E R S H E L L

Forgo the GUI in favor of the console
and free yourself of the drudgery of
administering Exchange.
 BY ADAM BERTRAM

The power of
PowerShell: An intro
for Exchange admins

Managing Exchange can be a significant time sink, and

you may be surprised to find that much of the time spent

administering Exchange is pure waste — unless, that is,

you’re already tapping PowerShell.

“Waste?!?” you may be thinking. “I don’t waste any

time managing Exchange!” But if you’re diligently attached

to the Exchange Admin Center building mailboxes, changing

routing groups, restoring email, and so on, you’re spending

far too much time clicking around in a GUI. Repetitive tasks

are the bread and butter of the PowerShell console. If you

aren’t already deeply versed in PowerShell, this hands-on

tutorial will convert you.

Windows PowerShell has its roots in Exchange Server.

Way back in Exchange Server 2007, the Microsoft Exchange

team decided to take a gamble on this new scripting

language, and PowerShell has since expanded its reach to nearly every facet of IT. If you’re an

Exchange administrator, you’ve probably used PowerShell some. Here, we delve a little deeper, going

over a few examples of what you can do in PowerShell with Exchange that will cut down the time you

spend on administrative drudgery.

Get connected without RDPing into your Exchange server
To tap the power of PowerShell, you first have to connect to your Exchange server. You could remote

desktop onto one of your Exchange servers and fire up the Exchange Management Shell, but I don’t

recommend that approach at all. Servers are meant to process workloads, not to power GUIs. Instead,

there’s a better way to connect, called implicit remoting.

All the PowerShell functionality that comes bundled with Exchange Server is wrapped up in a

PowerShell module. When Exchange is installed, the module is installed on the server, not your admin

workstation. Thus, you will need a way to make all of those Exchange PowerShell functions available

on your admin workstation. Implicit remoting allows you to do that.

T
H

IN
K

S
T

O
C

K

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 6T H E P OW E R O F P OW E R S H E L L

To make use of implicit remoting, you must first establish a remote session to the Exchange server.

Once your session is established, you will then virtual import this remote session into your local session,

which will make it seem like you’re on the server’s PowerShell console itself.

To create that remote session, we’ll use the New-PSSession cmdlet. Exchange provides specific

configuration options for remote sessions, so we’ll need to specify a few more parameters than simply

the name of the server and a credential that typically applies to new remote sessions. This means

specifying the ConfigurationName of Microsoft.Exchange and a ConnectionUri of
http://MYEXCHANGESERVER.MYDOMAIN.LOCAL/PowerShell/?SerializationLevel=Full,

subbing in your environment’s server info for what’s in all caps in the URI.

$Session = New-PSSession –ConfigurationName Microsoft.Exchange

–ConnectionUri ‘http://MYEXCHANGESERVER.MYDOMAIN.LOCAL/PowerShell/?SerializationLevel
=Full’

This will create a remote session inside the $Session variable. Once you have this, it’s then a matter

of importing that remote session into your current local session by using the Import-PSSession
cmdlet.

Import-PSSession -Session $Session

If all goes well, you should see your module output as shown above. You should now have all of

the cmdlets available to the Exchange server now available on your local admin workstation. Here is

where the real power of managing Exchange with PowerShell begins.

Manage Exchange mailboxes with PowerShell
One of the most common Exchange administrative tasks is managing mailboxes. Your organization

probably has more than a few mailboxes, right? Mailboxes have a bunch of common attributes.

For example, every mailbox has an assigned username, a quota, set policies, sending limits, and so on.

This is where use of PowerShell shines. Let’s say you need to change the quota on 100 mailboxes.

That would be painful using the GUI, but it’s pretty easy using PowerShell.

Wherever you find yourself having to perform a certain action on a common set of objects the first

place you should look is PowerShell. Let’s go over a few examples.

Find mailboxes
Let’s say you have thousands of mailboxes spread across multiple mailbox servers. Perhaps you need to

find some information about one of your user’s mailboxes. Let’s pick on Virginie Jean. To do this, we’d

simply use the Get-Mailbox cmdlet, which returns limited, but useful information about mailboxes.

Get-Mailbox -Identity ‘Virginie Jean’

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 7T H E P OW E R O F P OW E R S H E L L

Limited information indeed — what if I’m looking for an attribute of her mailbox that I don’t see

among the above defaults? By using the PowerShell pipeline and the Select-Object cmdlet with

an asterisk for the -Property parameter, I can get the full extent of what the Get-Mailbox cmdlet

pulls about the mailbox, not only Microsoft’s “friendly” defaults. The screenshot below is a tiny fraction

of the information you can glean from Get-Mailbox. There are actually dozens of attributes about

the mailbox you can find.

Get-Mailbox -Identity ‘Virginie Jean’ | SelectObject -Property *

Pretty easy — but what if you need to find information about a lot of users? If all of those users

match some kind of pattern you can use the -Filter parameter.

Maybe I want to find all of the mailboxes owned by someone named Adam.

Get-Mailbox -Filter {Name -like ‘Adam *’}

Change mailboxes in bulk
Finding mailboxes is rarely the end of your task. Instead you’ll likely want to do something with

those mailboxes after you’ve found them. Here, piping your set of mailboxes to another cmdlet like

Set-Mailbox or Remove-Mailbox is key.

What if the owners of all of those mailboxes that start with “Adam” went on vacation and we

needed to change the forwarding address? Simple:

Get-Mailbox -Filter {Name -like ‘Adam *’} | Set-Mailbox -ForwardingAddress
‘somecontact@domain.local’

Or maybe their owners left the organization, and I want to remove the mailboxes. Simply change

Set-Mailbox to Remove-Mailbox and they’re gone.

Get-Mailbox -Filter {Name -like ‘Adam *’} | Remove-Mailbox

Chaining a number of commands together by piping them directly from one cmdlet to another in

this way is a powerful way of addressing Exchange admin tasks through PowerShell.

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 8T H E P OW E R O F P OW E R S H E L L

Mailbox statistics and CSV reports
Another common activity that Exchange administrators must do is finding where all that hard-earned

storage is allocated. Which mailbox takes up the most space on the SAN, and which folders in that

mailbox are taking up so much space? This kind of information can easily be found with PowerShell

using the Get-MailboxFolderStatistics cmdlet.

While we’re at it, let’s add another PowerShell cmdlet called Export-Csv to our arsenal. Recall

that piping thing we did earlier? That isn’t limited to mailboxes. The pipeline is one of the most

powerful features of PowerShell for good reason. In this section, I’ll show you how you can use the

pipeline to take data returned from any cmdlet and immediately turn it into a nicely formatted CSV file

with little effort.

Using the Get-MailboxFolderStatistics cmdlet you can easily see what items are in a

folder, how much space each item takes up, and other useful information. Let’s try the cmdlet on

Virginie Jean’s mailbox again.

Get-MailboxFolderStatistics -Identity ‘Virginie Jean’

The above screenshot shows a single object returned from the command, which is the top of the

information store. In total, Virginie’s mailbox returned 15 different folders from her calendar, notes,

email folders, and so on. Suppose you want to see the mailbox’s calendar only. Simply append the
-FolderScope parameter at the end of this command and use the argument Calendar.

You can see that you have a lot of control over the types of folders to look for.

help Get-MailboxFolderStatistics -Parameter FolderScope

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 9T H E P OW E R O F P OW E R S H E L L

You’ve seen an example of a single mailbox, so let’s take this global. How hard it is to search all

mailbox folders and get a report on who’s hogging up storage? Get-MailboxFolderStatistics
doesn’t have an option to find all mailboxes, so we’ll have to go back to the pipeline again.

Get-Mailbox | Get-MailboxFolderStatistics

This simple command will begin enumerating all mailboxes in your organization. As it’s finding each

mailbox, it will then “pipe” the mailbox to Get-MailboxFolderStatistics, where it will begin

enumerating all the folders inside each mailbox. Note, however, that by default Get-Mailbox will return

only the first 1,000 mailboxes it sees. If your organization has more than 1,000 mailboxes you’ll have

to use the -ResultSize parameter to increase the limit. My demo organization has more than 1,000

mailboxes, so I will use this parameter when running the report.

We now have the ability to get all mailboxes and all folders inside the mailboxes. Get-
MailboxFolderStatistics returns a lot of different properties for the folders. Since we’re

building a space report we don’t need all of them. I only need the mailbox name, folder name, and the

size of each folder. To limit my output to these properties I’ll use the Select-Object cmdlet and the

-Property parameter. You’ll see in the screenshot below that I’m using the Select-Object alias

Select and I’m excluding the -Property parameter, instead choosing what PowerShell calls

positional binding.

Get-Mailbox -ResultSize 10000 |
 Get-MailboxFolderStatistics |
 Select Identity,Name,FolderSize

(Note: This is typed as one line in PowerShell. Due to the line length, it is broken into different lines for

formatting reasons.)

I included a few of the objects to give you an example of what you might see. Now we’re getting

only the information necessary for the report. Next, I’d like to sort all of the folders by FolderSize.

No problem — we’ll simply pipe the folders into the Sort-Object cmdlet and use the

-Descending parameter to ensure we see the biggest folders first.

Get-Mailbox -ResultSize 10000 |
 Get-MailboxFolderStatistics |
 Select Identity,Name,FolderSize |
 Sort-Object FolderSize -Descending

(Note: This is typed as one line in PowerShell. Due to the line length, it is broken into different lines for

formatting reasons.)

https://technet.microsoft.com/en-us/library/hh847872.aspx

Deep Dive

InfoWorld.com DEEP DIVE SERIES 2 0T H E P OW E R O F P OW E R S H E L L

Finally, we have the data we’re looking for, but perhaps our manager wants this information and

we need to email him. Since this is tabular data, a CSV would be perfect. How can we get this to

output as a CSV file? With one more cmdlet and pipe:

Get-Mailbox -ResultSize 10000 |
 Get-MailboxFolderStatistics |
 Select Identity,Name,FolderSize |
 Sort-Object FolderSize -Descending |
 Export-Csv -Path C:\FolderSizes.csv -NoTypeInformation

(Note: This is typed as one line in PowerShell. Due to the line length, it is broken into different lines for

formatting reasons.)

All I had to do was add Export-Csv to the end to send all the output to a CSV file rather than

the console. With Export-Csv you’ll use the -NoTypeInformation parameter a lot. If you do

not include this parameter, a small line will be included at the top of your CSV that contains text that

has nothing to do with the output.

Once it’s done you should then have a CSV file that contains every mailbox identity, name,

and the size sorted by largest to smallest.

If you’re curious as to how well it went without opening up Excel, you can easily read the top

few rows of the CSV using the Import-Csv cmdlet and Select-Object again. Since the

Identity property can get pretty long you can force the rows to fit nicely by ending the pipeline with

the Format-Table cmdlet using the -AutoSize parameter.

Import-Csv C:\FolderSizes.csv | select -first 10 | Format-Table -AutoSize

We covered a tiny fraction of what’s possible when using PowerShell to manage Exchange. If you

haven’t been using PowerShell to manage Exchange, I hope this tutorial has inspired you to start.

If you’d like to dive deeper into PowerShell and Exchange I recommend checking out “Microsoft

Exchange Server 2013 PowerShell Cookbook” by Mike Pfeiffer and Jonas Andresson. It’s a learn-by-

example book that gives you tons of recipes for making the most of PowerShell.  n

http://www.msexchange.org/blogs/bhargavs/exchange-server/book-review-microsoft-exchange-server-2013-powershell-cookbook-second-edition.html
http://www.msexchange.org/blogs/bhargavs/exchange-server/book-review-microsoft-exchange-server-2013-powershell-cookbook-second-edition.html

Deep Dive

2 1InfoWorld.com DEEP DIVE SERIES T H E P OW E R O F P OW E R S H E L L

In today’s cloud-centric world, we’re seeing an explo-

sion in the number of servers under IT management. Virtual

machines made servers cheap, and containers will push prices

down further. As a result, businesses can afford to deploy a

server for every new need, but they can no longer afford to

manage servers individually. Your servers no longer garner indi-

vidual attention but are simply soldiers in a huge resource pool,

dutifully fulfilling the resource requests of the data center.

This dramatic increase in server population requires a

new method of resource management, called configura-

tion management. Products like Chef, Puppet, Ansible,

Salt, and CFEngine have automated configuration manage-

ment in the Linux world for many years now. It wasn’t until

recently that the companies behind these products started

taking Windows seriously. This is in part due to Windows

PowerShell Desired State Configuration (DSC). Introduced with PowerShell 4, DSC provides a way to

manage Windows servers declaratively through the same configuration management practices the

open source community has been using for years.

At first glance, you might think that DSC is a competitor to these trusted configuration manage-

ment solutions. Technically, you can bring all of your servers under DSC management and forgo the

other products. However, this is not Microsoft’s intention, and in an environment of any size, you’d

soon see the downfalls of such an attempt. Microsoft did not build DSC to be a competitor but to be

used as a platform for others to build upon. DSC was built to provide a standardized method that any

solution could use to manage Windows (and Linux) systems however they choose.

If you’re looking into managing your Windows systems with a configuration management product,

why would you choose to use DSC anyway? After all, it’s a bare-bones platform. In fact, DSC is still

Get started
with Windows
PowerShell
DSC
It’s easy to automate Windows
Server configuration management
with PowerShell; here’s how.
BY ADAM BERTRAM

T
H

IN
K

S
T

O
C

K

http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html
http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html
https://blogs.msdn.microsoft.com/powershell/2015/05/05/powershell-dsc-for-linux-is-now-available/

Deep Dive

InfoWorld.com DEEP DIVE SERIES 2 2T H E P OW E R O F P OW E R S H E L L

extremely valuable for smaller businesses that don’t require features, such as reporting and Web

management, that larger enterprises might require. One of the big advantages DSC has for smaller

businesses is that it’s built right into the operating system as of Windows Server 2012 R2. There’s no

need to download, deploy, and manage third-party software. It comes baked into Windows already.

What DSC is made of
DSC is built to manage configuration baselines using three main components: resource providers

(Windows Server features, processes, files, registry keys, and so on), resources (the building blocks of

configuration scripts), and a Local Configuration Manager (LCM), the DSC “client” or “agent” that

applies configuration scripts on each target node. These components work in tandem to deliver a

configuration to a particular server.

Resource providers are the “API” between the operating system and other services in which DSC

tests, gets, and sets (if applicable) each configuration item on each server. Resource providers then

consume DSC resources in the form of PowerShell scripts. Resources are the component of DSC that

control the features, services, and applications installed on the operating system. Microsoft provides

you with about a dozen kinds of resources built into Windows, including WindowsFeature,

WindowsProcess, and File, to name a few.

Figure 1: Built-in resources for Windows Server 2012 R2.

These are components that allow you to control the presence and configuration of Windows

features, processes, files, and other components of the operating system. A downside of using

native DSC is that only a few DSC resources come built in. This forces users to build their own

resources in PowerShell. Users can download and consume custom-built resources from others in the

PowerShell community as well.

The various resource providers take their marching

orders from scripts managed by the LCM, which is in

charge of such details as how often resource providers

consume resources (in the form of PowerShell scripts)

and how they are applied. The LCM is the mediator

that controls the resource providers.

 Lastly, resources can be delivered to resource

providers in two ways: push and pull. Push mode

operates in the traditional way you’d expect to run

a script. You simply copy the resource to the server

and execute it. Once the script is executed, the LCM

sends the resource to the resource provider, which

then follows the instructions in the resource.

The pull method entails a server downloading the resource from a central server running a small

Web service known as a pull server. This pull server is in charge of storing all of the resources. Once a

Figure 2: An example of

LCM properties.

Deep Dive

InfoWorld.com DEEP DIVE SERIES 2 3T H E P OW E R O F P OW E R S H E L L

server requests all resources assigned to it, the pull server delivers the resource, the server pulls them

down locally and executes them.

Most businesses choose to start out delivering resources via the push method. This allows them to

build resources as they would PowerShell scripts and forgo building a pull server. However, push does

not scale. It is recommended to build a pull server if you are deploying DSC to production in order to

manage many servers.

Creating a DSC configuration
To manage a set of configuration items on a server first requires building a DSC configuration script.

A DSC configuration script is a combination of various references to DSC resources that, when

combined, form the desired state of a server.

DSC configuration scripts look similar to simple PowerShell modules and follow a domain specific

language similar to that of Puppet. They also follow a similar naming convention with PowerShell func-

tions; instead of the word “function” they use the word “configuration,” for example. This makes it

easy for people who already know PowerShell to start writing DSC modules.

Figure 3: A DSC configuration to install a Windows Server feature.

Configurations contain one or more resources. These resources can be built-in resources, like the

WindowsFeature resource mentioned above, or custom resources, which allow you to incorporate

any kind of PowerShell code you would like into the configuration. You can write custom resources

yourself or draw on those created by the broader PowerShell community. Microsoft provides many

resources that do not come installed by default in its GitHub repository. There you can find dozens of

DSC resources like xHyper-V, xCertificate, and xDnsServer to use in your configurations.

Let’s go over how to build your first DSC configuration. In this example, we will build the DSC

configuration script to ensure a Windows server has the SNMP feature enabled. Because the DSC

resource WindowsFeature comes built into Windows Server 2012, we don’t have to download any

external files. We will build this configuration on a Windows Server 2012 R2 server and execute it on

the same machine. This means we will use the push mode, as our DSC client will not pull a configura-

tion from an external server.

https://www.pluralsight.com/blog/software-development/powershell-dsc-pull-server

Deep Dive

InfoWorld.com DEEP DIVE SERIES 2 4T H E P OW E R O F P OW E R S H E L L

Build the script
The first task is building the configuration script. To do this, we’ll open up our editor of choice and

get started.

In the first line you’ll notice that we have a block called Configuration. This is how every config-

uration script must begin. The name of the script can be anything we’d like. Inside of that we’ll typically

have a parameter block with various parameters to the configuration. $ComputerName is a typical

parameter, and you’ll see that we’re defaulting to the local computer here. Then, we have a Node block.

This represents the name of the computer, or group of computers, that this configuration will be applied

to. Since I’m specifying $ComputerName here, this script will build our configuration for the localhost

machine. Next, we have the WindowsFeature block. This is a reference to the WindowsFeature DSC

resource. I chose to give this reference a name of SNMPService, but it can be anything you’d like.

Inside of our DSC resource, we have two attributes: Name and Ensure. For the WindowsFeature

resource, the name attribute signifies the name of the Windows feature. The Ensure attribute signi-

fies that we want to ensure that this feature is present. We could just as easily choose to ensure that

something isn’t present, if that’s what we wanted.

Create the MOF file
Once the configuration script is created, we then build a Managed Object Format (MOF) file. To do this

requires executing our configuration block, which is as simple as referencing it in that same script. This

will create a MOF file with the same name as the computer it will be run on in a subfolder with the same

name as the configuration. You can see in Figure 4 below that executing our InstallSNMPService

configuration created a subfolder of the same name with a localhost.mof file inside.

Figure 4: Creating the configuration MOF directory and file.

Once we have the MOF file generated, we can then call Start-DscConfiguration and specify

the path to the folder we created. In the example below, I’m also using –Verbose to get more infor-

mation as it applies the configuration and –Wait in order for the LCM to wait until the configuration

has been applied. By default, LCM

will create a PowerShell job and

continue on before it is done.

Once the configuration is

applied, we can run the script

again and you’ll see that LCM

simply skipped over the install since

SNMP was already installed (Figure

6). The beauty of DSC is that you

don’t have to account for the

Windows feature being installed

or absent. DSC takes care of all

Figure 5: Applying the

DSC configuration.

Deep Dive

InfoWorld.com DEEP DIVE SERIES 2 5T H E P OW E R O F P OW E R S H E L L

that conditional logic for you. All you need to do is define how you want the state of the server to be

-- that’s it!

Figure 6: A subsequent run of the DSC configuration.

Once the configuration is applied, the LCM will take over and run again on its own every 15

minutes (by default). This means that once a configuration is set it will stay that way until you change

the script. If someone should change the server’s configuration manually, the LCM will soon set things

right again. Thus DSC helps you to enforce standard configuration policies at regular intervals.

Building your own DSC resources
We’ve now covered building a configuration script using the built-in WindowsFeature resource.

If the built-in resources don’t cover all the functionality you’re seeking, you can build custom DSC

resources. If you choose to create your own, you’ll need to know that DSC resources include three

functions: Get, Set, and Test.

When the LCM runs, the resource provider first initiates the Test function to determine whether the

configuration specified in the resource already matches the server’s current configuration. If not, it then

initiates the Get function to retrieve the current configuration. Depending on the LCM configuration,

DSC will then either report that the configuration has drifted or will run the Set function to bring the

server back into compliance.

With PowerShell 4, custom resources are created using MOF. On the plus side, MOF is a simple text

file that could be easily consumed on the server. It is also an industry-standard format. In short, MOF

was a simple way for Microsoft to get DSC shipped and immediately available to customers. Using

MOF-based DSC resources, an admin goes through a four-step process:

1. Build the DSC module

2. Execute the DSC module to create a MOF file

3. The MOF file would get copied to a server somehow

4. The MOF file would be consumed by the DSC resource provider to check for the state of the server

This process works, but it is not the elegant method of resource consumption that Microsoft envi-

sioned. As of PowerShell 5, Microsoft recommends creating custom resources via classes.

Classes are one of the big features introduced in PowerShell 5. Classes have been the mainstay of

every object-oriented programming language, and now PowerShell can be considered part of the club.

Classes have many uses in PowerShell 5, but one of the main use cases is class-based DSC resources.

Using class-based resources, we no longer have to fool with MOF files anymore. Our previous four-step

process can now be whittled down to three steps.

1. Build the DSC module

2. Copy the DSC module to the server

3. Execute the DSC module

Deep Dive

InfoWorld.com DEEP DIVE SERIES 2 6T H E P OW E R O F P OW E R S H E L L

Building resources from classes is not only faster than using MOF files, but it also adheres more

closely to how traditional PowerShell modules work. This makes it even easier for people to get started

writing DSC resources.

Get to know DSC
If you’re looking at configuration management options, it’s well worth your time to take a look at

DSC to manage your Windows servers. DSC has been around for only two years, but it is garnering

ever-increasing support from Microsoft and others in the community. Keep a close eye on Microsoft’s

PowerShell GitHub repository, where you’ll see contributors from Microsoft regularly fixing bugs,

adding features, and creating new resources for everyone to use.

Still in its infancy, DSC is far behind products like Chef, Puppet, Ansible, and Salt. Even if you

don’t choose to use native DSC for configuration management, it’s well worth your time to learn

how DSC works.

The companies behind the leading configuration management solutions are only now beginning to

adopt DSC in their products. You’re soon going to find that every configuration management product

that manages Windows systems is using DSC under the covers. Although you might not have to

manage DSC directly, it will be important to understand how it works in order to better manage and

troubleshoot the Windows configuration manager you do use.  n

https://github.com/PowerShell
https://github.com/PowerShell

