
1
G E N E R A L P U R P O S E U T I L I T I E S

In any programming language, scripting is
the solution to frequently performed tasks.

If you find yourself asking Couldn’t a robot or
well-trained monkey do this job?, then scripting with

Ruby just might be the next best solution. Writing
scripts for frequently performed tasks makes your job
and computing experience as efficient as it can be. Who wouldn’t want to get
the job done in less time with less effort? As you work through these examples,
I encourage you to write down ideas for your own scripts. Once you’ve finished
this book, you will probably have a list of scripts you want to write, or at the
very least, some useful revisions of mine. Are you ready? Let’s get started!

#1 Check for Changed Files
changedFiles.rb The purpose of this script is to validate a file’s integrity. While it sounds like

a humble end use, its applications are broad: If you can’t trust the contents
of files on your computer, you can’t trust your computer. Would you know if
a malicious worm or virus modified a file on your system? If you think your Wicked Cool Ruby Scripts

(C) 2008 by Steve Pugh

2 Chapter 1

antivirus has you covered, think again—most only go as far as checking for
known viruses and their signatures. File integrity validation is used every day
for real-world tasks such as digital forensics and tracking the behavior of
malicious logic. One method of tracking file integrity is shown below.

The Code

require 'find'
require 'digest/md5'

unless ARGV[0] and File.directory?(ARGV[0])
 puts "\n\n\nYou need to specify a root directory: changedFiles.rb
<directory>\n\n\n"
 exit
end

 root = ARGV[0]
oldfile_hash = Hash.new
newfile_hash = Hash.new
file_report = "#{root}/analysis_report.txt"
file_output = "#{root}/file_list.txt"
oldfile_output = "#{root}/file_list.old"

 if File.exists?(file_output)
 File.rename(file_output, oldfile_output)
 File.open(oldfile_output, 'rb') do |infile|
 while (temp = infile.gets)
 line = /(.+)\s{5,5}(\w{32,32})/.match(temp)
 puts "#{line[1]} ---> #{line[2]}"
 oldfile_hash[line[1]] = line[2]
 end
 end
end

 Find.find(root) do |file|
 next if /^\./.match(file)
 next unless File.file?(file)
 begin
 newfile_hash[file] = Digest::MD5.hexdigest(File.read(file))
 rescue
 puts "Error reading #{file} --- MD5 hash not computed."
 end
end

report = File.new(file_report, 'wb')
changed_files = File.new(file_output, 'wb')

newfile_hash.each do |file, md5|
 changed_files.puts "#{file} #{md5}"
end

 newfile_hash.keys.select { |file| newfile_hash[file] == oldfile_hash[file]
}.each do |file|

Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

Genera l Purpose Uti l i t i es 3

 newfile_hash.delete(file)
 oldfile_hash.delete(file)
end

 newfile_hash.each do |file, md5|
 report.puts "#{oldfile_hash[file] ? "Changed" : "Added"} file: #{file}
#{md5}"
 oldfile_hash.delete(file)
end

 oldfile_hash.each do |file, md5|
 report.puts "Deleted/Moved file: #{file} #{md5}"
end

report.close
changed_files.close

Running the Code
Execute this script by typing:

ruby changedFiles.rb /path/to/check/

You can add more than one directory to crawl, but subdirectories will
automatically be verified. The script will automatically determine if a directory
exists and then add it to the crawler’s queue.

The Results
The script will initially produce two separate files (changed.files and file_report
.txt). Both will contain a list of the names and MD5 hashes for all of the files
scanned by the script:

Added file: fileSplit.rb d79c592af618266188a9a49f91fe0453
Added file: fileJoin.rb 5aedfe682e300dcc164ebbdebdcd8875
Added file: win32RegCheck.rb c0d26b249709cd91a0c8c14b65304aa7
Added file: changedFiles.rb c2760bfe406a6d88e04f8969b4287b4c
Added file: encrypt.rb 08caf04913b4a6d1f8a671ea28b86ed2
Added file: decrypt.rb 90f68b4f65bb9e9a279cd78b182949d4
Added file: file_report.txt d41d8cd98f00b204e9800998ecf8427e
Added file: changed.files d41d8cd98f00b204e9800998ecf8427e
Added file: test.txt a0cbe4bbf691bbb2a943f8d898c1b242
Added file: test.txt.rsplit1 35d5b2e522160ce3b3b98d2d4ad2a86e
Added file: test.txt.rsplit2 a65dde64f16a4441ff1619e734207528
Added file: test.txt.rsplit3 264b40b40103a4a3d82a40f82201a186
Added file: test.txt.rsplit4 943600762a52864780b9b9f0614a470a
Added file: test.txt.rsplit5 131c8aa7155483e7d7a999bf6e2e21c0
Added file: test.txt.rsplit6 1ce31f6fbeb01cbed6c579be2608e56c

After the script is run a second time, three files will appear in the root
directory. Two of the files, changed.files and old_changed.files, are where the
MD5 hashes are stored; the third, file_report.txt, is a text file showing the Wicked Cool Ruby Scripts

(C) 2008 by Steve Pugh

4 Chapter 1

results. The script will compare the MD5 hashes for all of the files listed in
changed.files with those in old_changed.files and return any differences found.
Here is an example:

Changed file: old_changed.files 45de547aef9366eeaeb1b565dff1e1a3
Deleted/Moved file: test.txt.rsplit4 943600762a52864780b9b9f0614a470a
Deleted/Moved file: test.txt.rsplit5 131c8aa7155483e7d7a999bf6e2e21c0
Deleted/Moved file: test.txt.rsplit6 1ce31f6fbeb01cbed6c579be2608e56c
Deleted/Moved file: test.txt.rsplit1 35d5b2e522160ce3b3b98d2d4ad2a86e
Deleted/Moved file: test.txt.rsplit2 a65dde64f16a4441ff1619e734207528
Deleted/Moved file: test.txt.rsplit3 264b40b40103a4a3d82a40f82201a186

How It Works
This script is great for verifying the contents of your hard drive and ensuring
they haven’t been manipulated. The script starts by confirming that the user-
supplied arguments were included and that a valid directory was given. Next
is the initialization of variables used in the script. The root variable contains
the root directory to scan, two hashes are created that will be used for compar-
ing the files and their MD5 hashes, and, finally, the names of the files to be
used are specified . The script output is saved in two or three files, depend-
ing on whether the script has been run before. The main file, file_report.txt, is
used for reading the output, and the other two files are used to store the list
of MD5 hashes.

Next, the script checks to see if it’s been run before by looking for file_list
.txt . If the file is not found, the script moves on. If it finds file_list.txt, the
script immediately renames the file. The renamed file is then opened and the
contents are read. For every line in the file, the script reads a filename and
MD5 hash and stores these in the oldfile_hash for later comparison. Once
the oldfile_hash has been populated, the script is ready to begin computing
new MD5 hashes and comparing results.

As the script works its way through the directory tree, it will iterate
through each object . The Find.find method is a powerful recursive way to
retrieve files in a directory and subdirectories. The code block will be run on
every file found. The first statement is looking for the “.” and “..”—which are
skipped for obvious reasons. If the object is a directory, the script will give it
the skip treatment and press on. If the item is a file, the hash is generated
and stored for later use. The hashing process is surrounded by a begin/rescue
block to save us if something goes terribly wrong.

The bulk of the information gathering is now complete. All that is left
is to determine the status of each file. If a file has the same name and MD5
hash, it is unchanged and the script will remove the filename from the
output hash. There are three categories that a file can fit into aside from
Unchanged. The first is Deleted or Moved, which is determined by a file’s
presence in the past scan but not the current one . Next is the Changed
category. If the filename exists and the MD5 hash is not the same as in the
previous scans, the file has been changed . At this point, for the sake of
readability in the code, I used the ternary operator, which is an abbreviation
of the if/then/else statement. So, this says if the file exists in oldfile_hash, thenWicked Cool Ruby Scripts

(C) 2008 by Steve Pugh

Genera l Purpose Uti l i t i es 5

label it Changed, else label it Added; since the filename doesn’t exist previously,
it has been added since the last scan . All of the data is saved, and a report
is generated so the user is aware of each file’s status. If anything is out of the
ordinary, further analysis is required.

There are several software packages that perform similar computations
for security purposes, but the method above is a nice alternative, and the
price is right, too. For enhanced security, you can store the output files on a
separate medium, but I generally leave them in the top-level directory for
simplicity’s sake.

Hacking the Script
This script can be modified to use any number of hashing algorithms. I
chose MD5 because it is the most popular for checking a file’s integrity
(even though its hashes are vulnerable to a collision attack). This script
works on both Microsoft Windows and Unix-like systems. Cross platform
scripts are always a plus!

Other potential changes to the script include encrypting the hashed files
for added protection or interfacing the results into a database. The script has
many potential uses, and I’ll leave it to you to investigate further. If you are
curious about encryption, check out the next script.

#2 Encrypt a File
encrypt.rb How often have you heard about people selling their computers on an

auction site, only to later discover that their sensitive information had been
exposed on the Internet? And what about corporate espionage, or all those
missing government laptops? If you talk to security experts, one of the first
recommendations they make is to encrypt sensitive information. You could
always buy a program that does this for you, but that’s no fun. Let’s write our
own encryption script! There are many encryption algorithms from which to
choose, all with varying levels of strength. In this example, I will be using
Blowfish, a very fast, symmetric block cipher.

The Code

 require 'crypt/blowfish'

unless ARGV[0]
 puts "Usage: ruby encrypt.rb <filename.ext>"
 puts "Example: ruby encrypt.rb secret.stuff"
 exit
end

#take in the file name to encrypt as an argument
filename = ARGV[0].chomp
puts filename

 c = "Encrypted_#{filename}"

 if File.exists?(c) Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

6 Chapter 1

 puts "File already exists."
 exit
end

 print 'Enter your encryption key (1-56 bytes): '
kee = gets.chomp

 begin
 blowfish = Crypt::Blowfish.new(kee)
 blowfish.encrypt_file(filename.to_str, c)
 puts 'Encryption SUCCESS!'

 rescue Exception => e
 puts "An error occurred during encryption: \n #{e}"
end

Running the Code
You must have the Ruby gem crypt installed on your system—use the
command gem install crypt at the console to install the crypt library. This
encryption script is accessed through a command prompt. To run, type:

ruby encryption.rb /path/of/file/to/encrypt

You will be prompted for a password:

Enter your encryption key (1-56 characters):

WARNING Remember your password, or you won’t be able to decrypt your file!

Now press ENTER and, if the encryption was successful, you will see this
message:

Encryption SUCCESS!

Look in the folder where this script resides; you will see the new,
encrypted file, named Encrypted_<filename>.

The Results
For the example above, I used a plaintext file with the following contents:

Wicked Cool Ruby Scripts

After the script has finished encrypting the file, it will output a success
message. You can then attempt to view the file. Good luck deciphering it if
you forgot your password:

qo”.1[>°‹|šã_8tÃhÞí}“ƒ-‰1ð»=ðrþ¡.¸

As you can see, the results don’t resemble the original plaintext at all.
Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

Genera l Purpose Uti l i t i es 7

How It Works
In the first line, I include the library used for encryption: crypt/blowfish .
Note that you could change this to use another algorithm, such as Rijndael
or GOST. Line starts the creation of our encrypted file. Creating files in
Ruby is very simple. As you can see, I used a shortcut to name the file by
including the variable (filename) in line with my string, Encrypted_#{filename}.
I enjoy having the option of including variables in line with a text string, so
you will see I use them throughout this book.

Next, we check to see if the encrypted filename already exists. We don’t
want the script overwriting files arbitrarily—data gets lost very easily that way.
If there is no conflict, the script continues on . Now that the script knows
the encrypted file hasn’t already been created, an encryption key, or password,
needs to be provided by the user. The script asks for a key that is between
1 and 56 characters . Once all the ncessary information has been collected,
the script starts a begin/rescue error-handling block . The last and most
important piece of the script is the actual encryption of the data. A new encryp-
tion object is created with the encryption key passed as an argument . Then
the file is passed to the encrypt_file method, and poof—the file is encrypted .
If any errors were encountered during the encryption phase, the rescue block
is there to catch them and exit the script gracefully, reporting the specific
error .

Hacking the Script
You can modify this script in many different ways. For example, you can make
it a modular part of another program, change the encryption algorithm,
layer the encryption, automatically delete the plaintext file after encryption,
or encrypt entire directories.

Next, we will look at how to reverse the process and get our informa-
tion back.

#3 Decrypt a File
decrypt.rb This code is structured much like the encryption algorithm, so I will focus on

the differences between the two. I am using the same algorithm for decryption
as used during encryption. As mentioned earlier, you can use any number
of encryption algorithms—just be sure to use the corresponding decryption
algorithm. Don’t forget your password, or else you will have to write your own
brute force script if you ever want to see your data again!

The Code

require 'crypt/blowfish'

unless ARGV[0]
 puts "Usage: ruby decrypt.rb <Encrypted_filename.ext>"
 puts "Example: ruby decrypt.rb Encrypted_secret.stuff"
 exit Wicked Cool Ruby Scripts

(C) 2008 by Steve Pugh

8 Chapter 1

end

 filename = ARGV[0].chomp
puts "Decrypting #{filename}."
p = "Decrypted_#{filename}"

 if File.exists?(p)
 puts "File already exists."
 exit
end

 print 'Enter your encryption key: '
kee = gets.chomp

begin
 blowfish = Crypt::Blowfish.new(kee)
 blowfish.decrypt_file(filename.to_str, p)
 puts 'Decryption SUCCESS!'

 rescue Exception => e
 puts "An error occurred during decryption: \n #{e}"
end

Running the Code
The code is simple to execute; just type the name of decryption script followed
by the file you wish to decrypt:

ruby decrypt.rb encrypted_filename.ext

The Ruby script will prompt you for the encryption key. Remember that
you must have the key used to encrypt the file in order to decrypt it. If you
don’t, then there is no way to recover the file other than brute force, which
can take much longer than you probably want to spend.

The Results

File Content Before: qo”.1[>°‹|šã_8tÃhÞí}“ƒ-‰1ð»=ðrþ¡.¸
File Content After: Wicked Cool Ruby Scripts

As expected, the decryption script took the cipher text and cleanly
translated it back into plaintext. If you have time, try using the wrong key
and examine the output. It will look as cryptic as the cipher text.

How It Works
The script starts by grabbing the filename from the command-line argument
and initializing the variables that will be used . Whenever a file is created,
you should always check to see if there is already a file with the same name .
After the algorithms have been initialized, the script will ask for a key .

Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

Genera l Purpose Uti l i t i es 9

Up to this point in the script, everything looks as it did for the encryption
script. Even if you type the wrong encryption key, the script will decrypt the file
based on that incorrect key, with results as cryptic as they were before. If all
goes well, you’ll be able use the file that was previously encrypted.

The actual decryption happens using the decrypt method from the crypt
library , which is just the reverse of the encryption.

If there are no errors or exceptions, the output will display Decryption
SUCCESS! and the program will exit. If there is an issue, our begin/rescue block
will catch the error and enter our rescue case. The rescue case displays an error
message and notifies the user that the file has not yet been decrypted .

Any modifications you make to the encryption script must also be made
to the decryption script. If you do a task in the encryption script and forget to
undo it in the decryption script, your data will be history.

#4 File Splitting
fileSplit.rb A cool use of Ruby scripting is to split a large file into several smaller, sym-

metric files. I wrote this script for a friend who was having trouble sending
files into and out of his corporate network since the network administrators
wouldn’t allow files over a certain size to be transferred—presumably for
bandwidth reasons. This script worked like a charm.

The Code

 if ARGV.size != 2
 puts "Usage: ruby fileSplit.rb <filename.ext> <size_of_pieces_in_bytes>"
 puts "Example: ruby fileSplit.rb myfile.txt 10"
 exit
end

filename = ARGV[0]
size_of_split = ARGV[1]

 if File.exists?(filename)
 file = File.open(filename, "r")
 size = size_of_split.to_i

 puts "The file is #{File.size(filename)} bytes."

 temp = File.size(filename).divmod(size)
 pieces = temp[0]
 extra = temp[1]

 puts "\nSplitting the file into #{pieces} (#{size} byte) pieces and 1
(#{extra} byte) piece"

 pieces.times do |n|
 f = File.open("#{filename}.rsplit#{n}", "w")
 f.puts file.read(size)

Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

10 Chapter 1

 end

 e = File.open("#{filename}.rsplit#{pieces}", "w")
 e.puts file.read(extra)
else
 puts "\n\nFile does NOT exist, please check filename."
end

Running the Code
It’s easiest to run this script in a fresh directory with the file you want to split.
Like the previous scripts, start by typing:

ruby fileSplit.rb path/to/file size_of_pieces_in_bytes

If you want to split up a 10KB file into 1,000-byte (or 1KB) pieces, the
script will make 10 separate files labeled <filename>.rsplit<#1-10>. To do this,
type:

ruby fileSplit.rb test.txt 1000

The Results
The initial file used in this example is called test.txt, and the results are shown
below:

test.txt.rsplit0
test.txt.rsplit1
test.txt.rsplit2
test.txt.rsplit3
test.txt.rsplit4
test.txt.rsplit5
test.txt.rsplit6
test.txt.rsplit7
test.txt.rsplit8
test.txt.rsplit9

How It Works
If you are faced with a pesky corporate network policy that has limited the
size of files allowed to be transferred, or if you are looking for a more reliable
way to transfer large files, this utility will save the day. I was faced with the
corporate scenario, and I knew the file size limit, so I was able to hard code
the file sizes. However, you can use whatever size you need or make it an
option in the script.

The script starts by reading the first two items out of the ARGV array:
the name of the file to split and the size of each section. If the two variables,
filename and size, aren’t specified, the script will display correct usage .

Next, the script ensures that you are trying to split a real file . It’s
tough to divide by zero and even more difficult to split a file that doesn’t
exist. If the file cannot be found, the script exits and displays an error message Wicked Cool Ruby Scripts

(C) 2008 by Steve Pugh

Gene ra l Purpose Ut i l i t ie s 11

letting the user know something is wrong with the filename. Hopefully, the
file is found, and the script begins to set up for the splits.

As you know, files can be any size, and rarely are they perfectly divisible
by whatever number of bytes you chose. In order to deal with dynamic file
sizes, the script uses divmod—divmod will divide two numbers, passing back
an array containing the quotient and modulus. In this script, pieces is the
quotient and the extra is the modulus .

To maintain the file’s integrity, the split pieces are created by reading
in one byte at a time and writing binary to the output. This section is where
the magic happens . The whole pieces are written first, and then the extra
piece .

Hacking the Script
If you want to extend the code, a perfect addition would be to add a compres-
sion routine before the file is split. I’ll talk more about compression later.
Another spin on this script, giving it more flexibility, is to add an option for
splitting the file into a specific number of pieces, regardless of the size. You
could also modify this script to create file pieces sized to the media format of
your choice, whether it’s 700MB CDs or 2.88MB floppies.

#5 File Joining
fileJoin.rb This script was also written for my friend, knowing he would be pretty upset

if he didn’t have a way to reconstruct his files. This is a companion script for
the file-splitting one, and both scripts can be put together in a wrapper if you
prefer. (A wrapper is code that brings both scripts together in one utility.) I
separated them here for instructional purposes. This file-joining script will
only work for files that were previously split (see “#4 File Splitting” on
page 9); however, you can adjust it to suit your needs.

The Code

 if ARGV.size != 1
 puts "Usage: ruby fileJoin.rb <filename.ext>"
 puts "Example: ruby fileJoin.rb myfile.txt"
 exit
end

file = ARGV[0]
piece = 0
orig_file = "New.#{file}"

 if File.exists?("#{file}.rsplit#{piece}")
 ofile = File.open(orig_file, "w")
 while File.exists?("#{file}.rsplit#{piece}")
 puts "Reading File: #{file}.rsplit#{piece}"

 ofile << File.open("#{file}.rsplit#{piece}","r").read.chomp
 piece+=1
 end
 ofile.close Wicked Cool Ruby Scripts

(C) 2008 by Steve Pugh

12 Chapter 1

 puts "\nSUCCESS! File reconstructed."
else
 puts "\n\nCould not find #{file}.rsplit#{piece}."
end

Running the Code
The script does not support a change in directory, so make sure it is located
in the same directory as the files you want to join. To run the script, type:

ruby fileJoin.rb filename.ext

The Results
Using the files output by the file-splitting script, the input should be the
name of the file to be reassembled as shown below:

Reading File: test.txt.rsplit0
Reading File: test.txt.rsplit1
Reading File: test.txt.rsplit2
Reading File: test.txt.rsplit3
Reading File: test.txt.rsplit4
Reading File: test.txt.rsplit5
Reading File: test.txt.rsplit6
Reading File: test.txt.rsplit7
Reading File: test.txt.rsplit8
Reading File: test.txt.rsplit9
SUCCESS! File Reconstructed.

After the script has run, the assembled file will be called New.test.txt.
The new file that was joined will be found in the same directory as the

script. Each .rsplit piece will still exist, in case there were any errors reconstruct-
ing the file. Once you locate the file and open it, the contents should be
exactly as they were before you split the file. You can compare the old and
new MD5 hashes to see for yourself (see “#1 Check for Changed Files” on
page 1).

How It Works
The script starts by getting the original filename of the file that was split. If a
name was not provided as a command-line argument, the script will complain,
and you’ll have to try again . If a filename is provided, then the script checks
to see if there are any pieces that correspond to that filename . If not, it will
again complain, saying the file couldn’t be found.

After the first piece is located, the script creates the output file .
Next, a while loop is used to ensure that only the next consecutive piece is
appended to the main body . As long as there is a “next piece,” the script
will continue appending to the output file. Since the data of each split piece
has a newline at the end, we use the chomp method to ensure only raw data is
being streamed . Wicked Cool Ruby Scripts

(C) 2008 by Steve Pugh

Gene ra l Purpose Ut i l i t ie s 13

The output file is closed after all the pieces have been appended to it. A
nice success message is displayed and the script exits. Now you can check the
new file to verify that it is perfectly restored.

Hacking the Script
If you trust the script, you can tweak it to clean up after itself, erasing all of
the .rsplit pieces. You could also compute the MD5 hash of the file before and
after the split to verify its authenticity.

#6 Windows Process Viewer
listWin

Processes.rb
The process viewer in Windows Task Manager can be extremely frustrating,
due to a lack of information. If you have ever used the ps command on a Unix-
like system, you know how much more information is available besides the
process name, CPU/memory usage, and process owner. Some applications
make nice, detailed entries in the process viewer, and those tasks are easy to
identify, but other applications have some ambiguous name that doesn’t
do you any favors. Having an alternative way to view the processes is handy
because you can customize the script to show exactly what is important to you.
This script demonstrates how to retrieve every available process property.

The Code

 require 'win32ole'

 ps = WIN32OLE.connect("winmgmts:\\\\.")
 ps.InstancesOf("win32_process").each do |p|
 puts "Process: #{p.name}"
 puts "\tID: #{p.processid}"
 puts "\tPATH:#{p.executablepath}"
 puts "\tTHREADS: #{p.threadcount}"
 puts "\tPRIORITY: #{p.priority}"
 puts "\tCMD_ARGS: #{p.commandline}"
 end

Running the Code
The script is written so that it runs autonomously and displays information
about each process. Add and remove properties in the script as needed.

The Results

Process: winlogon.exe
 ID: 1296
 PATH:C:\WINDOWS\system32\winlogon.exe
 THREADS: 22
 PRIORITY: 13
 CMD_ARGS: winlogon.exe

Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

14 Chapter 1

Process: services.exe
 ID: 1348
 PATH:C:\WINDOWS\system32\services.exe
 THREADS: 15
 PRIORITY: 9
 CMD_ARGS: C:\WINDOWS\system32\services.exe
Process: explorer.exe
 ID: 1240
 PATH:C:\WINDOWS\Explorer.EXE
 THREADS: 14
 PRIORITY: 8
 CMD_ARGS: C:\WINDOWS\Explorer.EXE
Process: svchost.exe
 ID: 3836
 PATH:C:\WINDOWS\System32\svchost.exe
 THREADS: 8
 PRIORITY: 8
 CMD_ARGS: C:\WINDOWS\System32\svchost.exe -k HTTPFilter
Process: firefox.exe
 ID: 2140
 PATH:C:\Program Files\Mozilla Firefox\firefox.exe
 THREADS: 7
 PRIORITY: 8
 CMD_ARGS: "C:\Program Files\Mozilla Firefox\firefox.exe"
Process: cmd.exe
 ID: 1528
 PATH:C:\WINDOWS\system32\cmd.exe
 THREADS: 1
 PRIORITY: 8
 CMD_ARGS: "C:\WINDOWS\system32\cmd.exe"
Process: ruby.exe
 ID: 244
 PATH:c:\ruby\bin\ruby.exe
 THREADS: 4
 PRIORITY: 8
 CMD_ARGS: ruby ListWinProcesses.rb

How It Works
For most interactions with the Windows Operating System, I use the win32ole
library . This library is very useful, and I’ll demonstrate more automation
with it in later chapters. The first part of the script is the initialization of
winmgmts, which lets the script interact with the Windows internal methods .
Winmgmts is the Windows Management Interface (WMI). WMI has a lot of useful
tools that you can explore further if you’re interested in scripting for Windows.
I called my instance of WMI ps because it reminds me of the ps method in
Unix-style systems.

Next, the script iterates all instances of win32_process. This is where
all of the processes are found and information can be extracted . The
properties I used for the script are process name, id, path, threads running,

Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

Gene ra l Purpose Ut i l i t ie s 15

priority, and command line arguments. I find knowing command-line
arguments useful in case I want to invoke the program from some other
script or from the command line .

Hacking the Script
If you want to view everything about each process, you can include the
properties listed below from the WMI properties class. There are a lot of
possible configurations to suit your needs.

While the list above contains all the properties for the WMI process class,
there are several other operating system classes—each with its own properties.
To use the same script with a different operating system class, replace the
win32_process at with another WMI class. For example, registry would be
win32_registry.

#7 File Compressor
compress.rb Being able to effectively compress a file is a serious asset when you start

talking about data storage. The more efficient the compression, the more
information can be stored in the same amount of space. There are two
popular Ruby compression libraries in use today. The first is ruby-zlib, and
the second is rubyzip. Both have their advantages and disadvantages, and
I’ll leave it to you to choose a compression algorithm that fits your purpose.
I will be using rubyzip in the following script.

WMI Process Class Properties

Caption OSCreationClassName QuotaPeakPagedPoolUsage

CommandLine OSName ReadOperationCount

CreationClassName OtherOperationCount ReadTransferCount

CreationDate OtherTransferCount SessionId

CSCreationClassName PageFaults Status

CSName PageFileUsage TerminationDate

Description ParentProcessId ThreadCount

ExecutablePath PeakPageFileUsage UserModeTime

ExecutionState PeakVirtualSize VirtualSize

Handle PeakWorkingSetSize WindowsVersion

HandleCount Priority WorkingSetSize

InstallDate PrivatePageCount WriteOperationCount

KernelModeTime ProcessId WriteTransferCount

MaximumWorkingSetSize QuotaNonPagedPoolUsage WorkingSetSize

MinimumWorkingSetSize QuotaPagedPoolUsage

Name QuotaPeakNonPagedPoolUsage

Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

16 Chapter 1

The Code

require 'zip/zip'

 unless ARGV[0]
 puts "Usage: ruby compress.rb <filename.ext>"
 puts "Example: ruby compress.rb myfile.exe"
 exit
end

file = ARGV[0].chomp

 if File.exists?(file)
 print "Enter zip filename:"
 zip = "#{gets.chomp}.zip"

Zip::ZipFile.open(zip, true) do |zipfile|
 begin
 puts "#{file} is being added to the archive."

 zipfile.add(file,file)
 rescue Exception => e
 puts "Error adding to zipfile: \n #{e}"
 end
 end
else
 puts "\nFile could not be found."
end

Running the Code
This script allows users to compress different file types, either to save space
or for easy archiving. Call the script with the following command:

ruby compress.rb /path/to/file

The Results
The script will create a compressed archive of the file specified on the
command line using the name the user provides at the prompt. For this
example, I compressed chapter1.odt into nostarch.zip. Before compression,
chapter1.odt was 29.1KB, and after the compression, it was 26.3KB. The file
will be stored in the same directory as the script is executed.

How It Works
When the script is run, the first error handling check is made to ensure the
user has provided a file to compress . If a filename has been provided, the
file is checked for availability. As always, there is no sense in continuing if the
object we want to manipulate is not available. If the file doesn’t exist, the script
alerts the user and promptly exits . If the file does exist and has been vali-
dated, the user is asked to name the Zip file. After the user types the filename

Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

Gene ra l Purpose Ut i l i t ie s 17

and presses ENTER, the script continues. That press of the ENTER key is added
to the character stream and, in turn, sent to the script as user input. You’ll
note that chomp is used to remove the \n (newline character) that is added when
the user strikes ENTER.

The code used to compress the file is straightforward. As seen above on
line , the section will open an existing Zip file if it is available and the second
parameter is set to true. A new Zip file will be created if the file doesn’t already
exist. These options are similar to the open method in the File library.

Sometimes errors happen. The most vulnerable spot in this script is
during the compression while adding files to the Zip file. The begin/rescue
block at is used to handle unforeseen errors and provide information to
the user about any issues. If an error does occur, the rescue block will be
executed and the script will exit, displaying the error message .

Each file that is being added to the Zip file is saved using the add
method . You can create directories in the Zip file from this section or
write entirely new files on the fly. Basically, the Zip filesystem can be treated
like any normal directory on your computer. The syntax is a little different,
but the results are the same.

The rubyzip library is wonderful because you can open the Zip file and
manipulate the contents without having to decompress the entire archive.
Also, instead of grouping files and then compressing them, as tar and gz do,
rubyzip will do all of this with just one command.

#8 File Decompression
decompress.rb This script shows you the basics of decompressing a file. The rubyzip library

does all of the work for you. On a standard Unix-like system, you would have
to manually unzip the file, carry out your task, and then re-compress the file.
With rubyzip, you can work with files in an archive using one seamless library.
This script completely decompresses an archive into the user-specified
directory.

The Code

require 'zip/zip'
require 'fileutils'

unless ARGV[0]
 puts "Usage: ruby decompress.rb <zipfilename.zip>"
 puts "Example: ruby decompress.rb myfile.zip"
 exit
end

archive = ARGV[0].chomp

 if File.exists?(archive)
 print "Enter path to save files to (\'.\' for same directory): "

 extract_dir = gets.chomp

Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

18 Chapter 1

 begin
 Zip::ZipFile::open(archive) do |zipfile|
 zipfile.each do |f|

 path = File.join(extract_dir, f.name)
 FileUtils.mkdir_p(File.dirname(path))
 zipfile.extract(f, path)
 end
 end

 rescue Exception => e
 puts e
 end
else
 puts "An error occurred during decompression: \n #{e}"
end

Running the Code
The decompression script is invoked like the compression script, with the file
to decompress as the command-line argument.

ruby decompress.rb /path/to/compressed/file

The Results
All files that were originally put into the Zip file will be decompressed in the
same structure they had before compression. For this example, I decom-
pressed nostarch.zip into chapter1.odt. The compressed Zip file chapter1.odt was
26.3KB, and after decompression, the file went back to the original 29.1KB.

How It Works
Similar to the compression script, this script expects the zipped file to be
provided as a command-line argument. If the archive file cannot be located,
the script will present the user with an error message . The major difference
between the scripts is that, instead of asking for the name of the Zip file to be
created, the decompression script requests the target path where the unzipped
files should go .

The next step is the start of a begin/rescue block . As with the com-
pression script, the decompression is a vulnerable section of code. The first
part of decompression is to open the zipped file . After that, each file is
decompressed. The decompression routine recreates the directory structure
as it was before compression . So, if there were two subfolders before com-
pression, there will also be two folders after this script has completed. As
long as no errors are encountered, the script will output each file into the
directory specified by the user. The last part of the script is the rescue block,
which will catch and report any errors that occur during decompression .

Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

Gene ra l Purpose Ut i l i t ie s 19

#9 Mortgage Calculator
mortgageCalc.rb I recently began house shopping. Being a first-time home buyer, the task

seemed daunting, especially when I considered the financing options. So, I
decided to write a script to help me get a handle on mortgage rates—at least
this way, I could estimate my monthly payments. Even though Ruby didn’t
solve all of the issues related to buying a home, this script helped me get a
handle on my financing options.

The Code

print "Enter Loan amount: "
loan = gets.chomp.to_i
print "Enter length of time in months: "
time = gets.chomp.to_i
print "Enter interest rate: "
rate = gets.chomp.to_f/100

 i = (1+rate/12)**(12/12)-1
 annuity = (1-(1/(1+i))**time)/i

 payment = loan/annuity

 puts "\n$%.2f per month" % [payment]

Running the Code
This script is interactive and therefore runs without any parameters. It
walks the user through each piece of information needed to come up with
the correct monthly payment. No command-line arguments are needed.

The Results

Enter Loan amount: 250000
Enter length of time in months: 360
Enter interest rate: 6.5

$1580.17 per month

How It Works
Mortgage calculations always seemed a bit cryptic to me, and I thought I
needed a wall of degrees to understand the formulas. Thankfully, calculating
a mortgage payment isn’t like solving differential equations! It’s quite a bit
easier, once you understand the basic formulas. The calculations of a mort-
gage payment are broken down into two main formulas (that can be combined

Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

20 Chapter 1

into one formula, if you are feeling especially daring). The first calculates the
interest rate per month using the following equation (don’t forget that ** is
the Ruby way of expressing exponentiation):

i = (1+rate/12)**(12/12)-1

The next piece of information that we need is the annuity factor .
Basically, the annuity factor is the current value of $1 for each period of time.
The time is received in months. So, the calculations are:

annuity = (1-(1/(1+i))**time)/i

Now that the annuity factor has been computed, monthly payments are
really what we are after. A simple division of the loan by the annuity factor
will reveal the final answer . All that’s left is some formatting to make the
information easier to read. As with other programming languages, Ruby
gives programmers the ability to specify how output should be formatted. In
this case, for monetary values, I am interested in two decimal places for the
cents in addition to the integer, or whole dollar, value .

Hacking the Script
One way to hack this script would be to give a variance of interest rates or
loan amounts, so the output could display several possible monthly payments
instead of just one—maybe +/ 0.05 percent. Usually, when you are looking
for a mortgage, you compare a lot of financial information. The more informa-
tion you can present in one interface, the better the decision you can make.

Wicked Cool Ruby Scripts
(C) 2008 by Steve Pugh

