
Copyright © 2014 InfoWorld Media Group. All rights reserved. • $129

DeepDive
A

R
T:

 S
T

E
P

H
E

N
 S

A
U

E
R

/S
H

U
T

T
E

R
S

T
O

C
K

 C
O

M
P

O
S

IT
E

5 clouds
for building
mobile apps

Deep Dive

InfoWorld.com deep dive series 2PA A S

The general
idea of MBaaS
is that mobile
apps need
common
services that
can be shared
among apps
instead of being
custom devel-
oped for each.

Deep Dive

2InfoWorld.com deep dive series W h i c h M B aa S i s r i g h t f o r yo u ?

MBaaS (mobile back end as a service) is
a fairly new product category that has largely

supplanted MEAPs (mobile enterprise applica-

tion platforms). The general idea of MBaaS is

that mobile apps need common services that

can be shared among apps instead of being

custom developed for each. Mobile apps using

MBaaS follow a loosely coupled distributed

architecture, and MBaaS systems themselves

typically have more distributed architectures

than MEAP systems, which tended to be unified

middleware servers.

MBaaS systems typically provide push notifi-

cations, file storage and sharing, integration with

social networks such as Facebook and Twitter,

location services, messaging and chat functions,

user management, the ability to run business

logic, and usage analysis tools. Enterprise-

oriented MBaaS systems also provide integration

with existing applications and databases.

Pick one:
5 clouds for
building
mobile apps

By Martin Heller

Deep Dive

InfoWorld.com deep dive series 3PA A S

For extra credit,
MBaaS systems
can generate
mobile SDKs.
This is most
useful when
a vendor is
exposing its
services to
partners doing
mobile app
development.

Back ends don’t exist in isolation, so MBaaS

systems provide some level of mobile client

support. This ranges from exposing REST APIs to

all comers to providing app generation for iOS,

Android, some flavors of JavaScript, and perhaps

other mobile platforms.

In addition, back ends need to be customized

and programmed, so MBaaS systems provide

a combination of online and desktop develop-

ment environments. Finally, back-end services are

intended to be in continuous operation, so they

need a level of application monitoring and error

logging in addition to usage analysis. Monitoring

and analytics might be provided directly by the

MBaaS vendor or through integration with a

third-party service.

For extra credit, MBaaS systems can generate

mobile SDKs. This is most useful when a vendor

is exposing its services to partners doing mobile

app development. In addition, MBaaS systems

can support offline operation of their mobile

apps and offline/online database synchroniza-

tion. MBaaS systems may provide their own

mobile device management or integrate with an

MDM vendor. MBaaS systems may also support

device-specific services where appropriate, such

as iBeacon on iOS devices.

Commonalities and differentiators
In the course of reviewing FeedHenry, Kinvey,

Appcelerator, Parse, and AnyPresence, certain

capabilities and implementations became very

familiar. For example, all five MBaaS products

provide storage using MongoDB, an open source

NoSQL document database that stores JSON

objects. All of these products provide a data

design UI for their MongoDB data store, and

these UIs all look similar. It wouldn’t surprise me

if the UIs were all based on the same MongoDB

sample code.

All five MBaaS systems are available in a mult-

itenant cloud. All have online documentation. All

provide push notification and user authentication

APIs. All support native iOS and Android apps at

some level, and all have some way for developers

to implement custom server logic.

The differentiators between these prod-

ucts are telling. For example, their support for

integration with enterprise applications and

databases ranges from the basic ability to call

external REST interfaces that return JSON to

deep integrations with common applications and

databases. The time required for a developer to

implement a given enterprise integration with

an MBaaS ranges from days down to minutes,

depending on how much of the work a given

MBaaS vendor has already done for a specific

integration.

Some MBaaS systems are available

on-premise, and some are available in private

clouds. Some can be hosted in compliance with

HIPAA, PCI, FIPS, and EU data security standards.

Some have their own testing capabilities, and

some offer cloud builds of mobile apps.

Some support HTML5 and hybrid apps.

Some compile JavaScript to native device code.

Some support PhoneGap, some support Apache

Cordova, and some avoid both wrappers for

hybrid apps in favor of other solutions, such as

generating native apps.

Some run their back ends on Node.js, some

on Rails, and some on unspecified platforms.

Some support BlackBerry, Windows Phone 8,

Windows 8, or Unity clients.

Some have hosted app and back-end IDEs in

their cloud, some provide multiplatform desktop

IDEs, and some have desktop command-line

interfaces for cloud control. Some support

multiple popular JavaScript frameworks, such as

Backbone and Angular, and some use their own

JavaScript frameworks, which may be adapta-

tions of specific open source frameworks.

MBaaS five ways
As we’ll see, the different MBaaS vendors have

targeted slightly different markets and made

slightly different technical choices. Neverthe-

less, they have a high degree of overlap and

commonality.

AnyPresence
The goal of AnyPresence is not only to help

enterprises build back ends for their mobile apps.

AnyPresence combines app building, back-end

services, and an API gateway.

AnyPresence has an online designer that

generates back-end code, mobile app code, and

even customized mobile API code. All the gener-

Deep Dive

W h i c h M B aa S i s r i g h t f o r yo u ? InfoWorld.com deep dive series 3

Deep Dive

4W h i c h M B aa S i s r i g h t f o r yo u ? InfoWorld.com deep dive series

ated code can be downloaded, edited, and run

on compatible platforms. To cite one of AnyPres-

ence’s favorite customer examples, MasterCard

has used AnyPresence to enable partners to

easily build mobile apps against MasterCard’s

Open API services.

AnyPresence generates app UIs (or starter

kits, if you wish) for jQuery, Android (XML

layout), and iOS (storyboard), and it generates

app SDKs for Java, Android, HTML5, Windows

Phone, Xamarin, and iOS. The design environ-

ment refers to the generated JavaScript/HTML5

SDK as “jQuery.” In fact, AnyPresence actually

generates CoffeeScript that uses the Underscore,

Backbone, and jQuery libraries.

AnyPresence generates back-end servers for

Ruby on Rails. In the future it will also generate

Node.js back ends, which will be a good devel-

opment. The AnyPresence environment can

generate deployments to Heroku (usually for a

Rails back end) to Amazon S3 (usually for HTML5

apps) to native iOS and Android apps with or

without Apperian security. You aren’t limited by

AnyPresence’s deployment choices, however. The

generated code can always be downloaded and

deployed elsewhere, assuming you have compat-

ible deployment environments.

The AnyPresence design environment exists

online and runs in most browsers. The design

environment has a dashboard; a settings screen;

screens to create and monitor environments,

deployments, and builds; screens to generate

and deploy apps, back ends, and SDKs; screens

to add and manage data sources and data

objects; screens for authorization, roles, and

authentication strategy; screens for stock and

custom extensions; the interface designer; and a

customizable set of themes.

I found the selection of data sources to be

good and the implementation of the provided

MongoDB data store to be on par with other

MBaaS systems. What sets AnyPresence apart is

the way the data model integrates throughout

the design environment and into all the gener-

ated code.

The place you add most monitoring integra-

tions, such as Airbrake and New Relic, is hidden

deep in the Deployments/Add-ons tab. Natu-

rally, monitoring is dependent on the runtime

environment, and AnyPresence is designed to

be environment-agnostic. For Splunk integra-

tion, you have to enable syslog output on the

back end to push all the logs/events into Splunk

systems for reporting and monitoring.

Appcelerator
Appcelerator Titanium has been a player in the

mobile development space for several years, with

a local development environment that compiles

JavaScript to native code for iOS, Android, and

other targets. With the release of Appcelerator

Studio 3.3 and Appcelerator Platform 2.0 in July

2014, the company added an MBaaS with about

25 APIs, Node.js support, and online analytics. In

addition, Appcelerator has published interfaces

to its MBaaS that developers can add to apps

built with native SDKs, although it hasn’t yet

supported native SDKs in its own Appcelerator

Studio IDE.

Developers can see a quick overview of app

installs, sessions, API calls, and crashes in the

online Appcelerator dashboard overview page.

Other parts of the dashboard allow for cloud

management, testing, performance metrics, and

analytics.

The Cloud panel shows usage, exposes data

management, displays API request and push

notification logs, lists custom services, and allows

for cloud configuration. The testing panel uses

SOASTA’s TouchTest as an integrated mobile

testing solution. The performance panel allows

you to monitor your apps and troubleshoot

AnyPresence’s
app build selection

screen. Note the
wide assortment
of SDKs and the

small assortment
of prototype app

UIs that can be
generated.

Deep Dive

5

performance, crashes, and exceptions. It also

lets you view crash trends, integrate with bug

tracking systems, and configure your monitoring.

Developers can define and view Appcelerator

analytics online, as well as optionally publish

selected analytics to the Appcelerator Insights

app for the iPad, typically for use by a manager.

Appcelerator Platform allows you to build

custom back-end services using Studio and

Appcelerator’s Node.ACS MVC (model-view-

controller) framework. Node.ACS combines

Node.js and Express with interfaces to

Appcelerator Cloud Services. Appceler-

ator also allows you to run plain Node.

js applications on its cloud platform.

Appcelerator has multiple frame-

works on the client side, and multiple

API types for the cloud. At the base

level on the client, Appcelerator offers

the Titanium SDK, which provides

an interface between JavaScript and

native services. At a higher level,

Appcelerator offers the Alloy Frame-

work, which is based on the model-

view-controller architecture and

contains built-in support for Backbone

and Underscore. When you create a

new client app from Studio, you typi-

cally generate one that uses Alloy.

The Alloy framework handles some

of what you need for offline/online data synchro-

nization, but not all of it. Appcelerator lacks

preconfigured, vetted enterprise data connectors

other than for SAP and Salesforce.com. However,

because it can run Node modules on its

Node.ACS service, developers can draw on

modules from the Node.js community. Appcel-

erator’s only commercial sync server is currently

limited to a Microsoft Dynamics connector.

FeedHenry
FeedHenry, with a focus on supporting enter-

prise line-of-business apps, is a Node.js-based,

enterprise-oriented MBaaS and mobile applica-

tion platform. It has a wide array of integrations,

both online and offline development options,

collaborative app building, and a drag-and-drop

form builder. FeedHenry was spun off from the

Irish Research Institute in 2010 and acquired by

Red Hat in September 2014.

FeedHenry claims to have global infra-

structure on all major clouds and support for

on-premise, back-end deployment. The Feed-

Henry online environment integrates directly with

GitHub for collaboration and version control.

FeedHenry 3 supports native SDKs for iOS,

Android, and Windows Phone 8, along with

hybrid apps using Apache Cordova, HTML5

mobile Web apps, and Sencha, Xamarin, and

Appcelerator Titanium. The way the JavaScript

interface to the FeedHenry cloud works, it

W h i c h M B aa S i s r i g h t f o r yo u ? InfoWorld.com deep dive series

Appcelerator Platform’s dashboard overview for the demo Field Service
application. The crashes were deliberately coded into the app.

FeedHenry includes an online editor, supporting
offline tools, and a command-line interface. Here
we see the mobile app, with a code editor in the
middle of the screen and a preview at right. You can
configure the back-end service in another pane of
the online interface.

Deep Dive

InfoWorld.com deep dive series 6W h i c h M B aa S i s r i g h t f o r yo u ?

would be hard to find a JavaScript framework

that isn’t compatible.

When writing for FeedHenry in JavaScript,

you include the feedhenry.js script in your HTML,

initialize it with $fh.init, then call cloud

functions from the $fh namespace. FeedHenry

can import existing apps from a Zip file or Git

repository.

The FeedHenry build service, which func-

tions along the same lines as Adobe PhoneGap

Build, can turn an HTML5 app into binaries for

Android, BlackBerry, iPhone, iPad, iOS (universal),

and Windows Phone. Each binary can connect to

one of your MBaaS instances, and it can be built

for development, distribution, release, or debug-

ging, depending on the platform.

FeedHenry has a drag-and-drop form builder

with a good assortment of templates to use as

starting points. However, at the time I reviewed

FeedHenry, it had few full-fledged app templates.

FeedHenry lists more than 50 Node.js plug-

ins in its curated modules list. That list includes

interfaces to most major relational and NoSQL

databases. Should the curated list not include

what you seek, the much larger list of Node

community modules is likely to yield a match.

FeedHenry runs on all major public and

private clouds, and on a wide range of IaaS

and PaaS infrastructures. FeedHenry operates a

HIPAA-compliant cloud and live clusters in both

Europe and North America.

Kinvey
Kinvey bills itself as a complete mobile and Web

app platform. It has extensive client support,

integrates with the major enterprise databases,

and offers a back-end data store, a file store,

push notifications, mobile analytics, iBeacon

support, and the ability to run custom code on

the back end.

Deep Dive

InfoWorld.com deep dive series 7W h i c h M B aa S i s r i g h t f o r yo u ?

Kinvey sells to IT as its primary customer

because it provides an enterprise platform, not for

one or two apps but for tens or hundreds of apps

for an enterprise. However, it also engages and

supports the developer community app by app.

Kinvey supports native, hybrid, and HTML5

apps. It has native toolkit support for iOS and

Android. In addition, it supports Angular, Back-

bone, Node.js, Apache Cordova/PhoneGap, and

Appcelerator Titanium, and it provides a REST API.

Kinvey integrates with apps through libraries and

API calls, and expects you to edit your app locally.

Kinvey cloud code is written in JavaScript,

although not Node.js, and edited online. In addi-

tion to using standard JavaScript and external

services, it can use Kinvey APIs for logging,

accessing collections, sending push notifications,

sending email, validating requests, date and time

functions, asynchronous processing, rendering a

Mustache template, and obtaining the back-end

context. Cloud code can live in hook processing

functions and custom endpoints. Cloud code is

versioned internally in Kinvey.

Kinvey supports deploying on almost any

cloud, including private clouds. That includes

deploying to HIPAA-compliant facilities and to

facilities located entirely in the EU. Even Kinvey’s

multitenant cloud is considered secure enough

for most apps, as the company does end-to-end

encryption, and customers that use data links

can keep their data in databases behind their

own firewalls. If you have a Google App Engine

server, you can link it to your Kinvey back end.

Authentication can be done internally by

Kinvey or through LDAP or Active Directory in

the business and enterprise versions. Kinvey

also supports Facebook, Twitter, Google+, and

LinkedIn identities through OAuth.

Kinvey data links connect to Kinvey’s

MongoDB data store. In most cases, customers

forward the CRUD requests directly to the real

back end, but some cache the data in MongoDB.

Kinvey currently has data links for Microsoft

Dynamics CRM, Salesforce CRM, Oracle Data-

base, and Microsoft SQL Server.

Kinvey has an automated control setup

for offline data synchronization, in which data

is automatically pulled from the cache if the

application is offline. If the application is online,

data is pulled from the network and stored in

the cache. Using automated control, your Kinvey

app will attempt to synchronize any locally stored

data when the device goes online again, but if

the server data has also changed you’ll have a

conflict. You can set your conflict resolution policy

to clientAlwaysWins, serverAlwaysWins,

or a custom conflict resolution function.

Parse
Parse was once the poster child for MBaaS, and

despite its acquisition by Facebook, it is still a

viable, low-friction mobile back end for limited-

volume consumer apps. On the plus side, it is

well-documented, with good native client support

and a JavaScript client SDK based on Backbone.

Parse also runs JavaScript code on the back end,

which offers developers the option of an all-JavaS-

cript application stack. On the minus side, Parse

is missing big pieces necessary for business apps,

such as data integration, offline operation, and

online/offline synchronization. At the same time,

its pricing seems geared to lower-volume apps.

Parse supports native mobile, JavaScript, and

desktop apps. On the mobile side, it has native

support for iOS, Android, and Windows Phone

8. On the desktop, it has support for OS X and

Windows 8 (.Net), as well as Unity games.

Parse lets you run JavaScript code in the cloud

using the same Parse JavaScript SDK as the client.

Rather than have you routinely edit your cloud

code in a browser, as FeedHenry and Kinvey do,

Kinvey collections
use MongoDB,
which provides a
schema-less, no-SQL
database for use
by your apps. This
screen lets you
create and design
collections (only
the creation step
is necessary) and
choose whether to
enable or bypass
your database busi-
ness logic.

http://mustache.github.io/

Deep Dive

8W h i c h M B aa S i s r i g h t f o r yo u ? InfoWorld.com deep dive series

Parse supplies a command-line tool for managing

code in Parse Cloud and allows you to use your

favorite JavaScript editor on your computer.

However, you can view your code and your logs

in your dashboard. The command-line tool is an

app scaffold generator, app deployment tool, log

printer, app rollback tool, and self-updater.

Parse can send Push notifications to iOS,

Android, Windows 8, and Windows Phone 8.

In each case, you’ll have to provision your push

server, then provide the certificate or credentials

to your app.

Parse has a fairly complete user system

predefined, including the usual sign-up mecha-

nism with email verification and a provision for

anonymous users. A system of ACLs controls

what data individual users can read and write.

For more complicated use cases, Parse supports a

hierarchy of roles, with a separate layer of ACLs

for the roles.

Parse has nine integrations with other services.

Three of them -- Mailgun, Mandrill, and SendGrid

-- are for sending email. Stripe is for charging

credit cards. Twilio sends SMS and voice messages.

Third-party modules are available to integrate

Parse with Cloudinary, Instagram, and Paymill.

As far as I can tell, implementing enterprise

data integration with Parse requires writing a

REST Web service wrapper for the data source

and a JavaScript module for Parse. I haven’t seen

any options for hosting Parse other than using its

own multitenant cloud.

Mo’ better MBaaS
As you can see from the scores listed at the

bottom of the first page of this article, AnyPres-

ence earned the highest marks: a combined

score of 9.1 and an Editor’s Choice badge. I feel

that AnyPresence offers more value than the

others for enterprises that need to integrate their

existing systems with mobile applications, as it

generates customized SDKs, along with apps and

back ends, from your model and design. Costing

a “low six figures” per year, however, it won’t fit

into every company’s budget.

FeedHenry, which earned an overall score of

8.6, is also an enterprise-oriented MBaaS. Feed-

Henry has a nice integration with Git for collabo-

ration and version control, and I like its hosted

app build service, its Node.js back end and

curated Node modules list, and its drag-and-drop

form designer. Like AnyPresence, FeedHenry may

not fit into every company’s budget.

Kinvey, with an overall product score of

8.3, engages as a company with the developer

community, as well as with corporate IT depart-

ments. I like the way Kinvey does enterprise data

links through its internal NoSQL database API,

and I appreciate the way it has structured its

hooks for back-end business logic.

I criticized Appcelerator for its apparent lack

of effort to curate data integration modules, and

considered that its high price relative to Feed-

Henry and Kinvey may diminish its overall value,

giving it a net score of 7.8. However, Appcel-

erator as a company only recently pivoted into

the MBaaS space. It may yet fill in its product’s

missing functionality and adjust its pricing to be

more competitive.

Finally, I consider Parse suitable for building

and operating back ends for consumer-facing

mobile apps, and not business apps, given its

lack of any data connectors other than a basic

REST client. My other major reservation about

Parse is its usage-based pricing, which lets a

developer get started easily but could potentially

bite an underfunded startup that suddenly had

a viral hit on its hands without a real business

model. Its score is 7.6, the lowest in this group.

That isn’t to say you shouldn’t use Parse. It’s a

viable, low-friction way to get started with back

end as a service. However, if you choose to use

it, go in with your eyes open, monitor your costs,

and be prepared to throttle or eliminate service

calls that are running up bills you can’t afford.

For business apps, AnyPresence and Feed-

Henry lead the pack in both ease and capabili-

ties. Kinvey is not far behind, and its pricing is

more favorable for smaller businesses.  n

The Parse Cloud data
browser lets you
import bulk data;
add classes, columns,
and rows; and view
filtered data.

Deep Dive

InfoWorld.com deep dive series 9PA A S

AnyPresence
has an online
designer that
not only gener-
ates back-end
and mobile app
code, but also
customized
mobile
API code.

AnyPresence aces
enterprise mobile apps
AnyPresence combines broad client support, useful code
generation, and a rich set of options for data storage and
enterprise integration

AnyPresence is designed “to meet the

evolving needs of mobile-enabling a developer

ecosystem with fully portable run-time source

code and zero platform lock-in.” OK, that’s a

mouthful of marketing-speak. What it means,

however, is that the goal of AnyPresence is not

only to help enterprises build back ends for

their mobile apps; AnyPresence combines app

building, back-end services, and an API gateway.

AnyPresence has an online designer that not

only generates back-end and mobile app code,

but also customized mobile API code. All the

generated code can be downloaded, edited, and

run on compatible platforms. To go with one

of AnyPresence’s favorite customer examples,

MasterCard has used AnyPresence to enable

partners to easily build mobile apps against

MasterCard’s Open API services.

Now, it isn’t necessary for you to have part-

ners developing against your APIs for AnyPres-

ence to make sense for your business. If you

think about the generated app code as “app

UI starter kits” (the term AnyPresence likes) or

test apps for your back end, then the generated

mobile API classes would be building blocks for

your developers’ “real” apps.

Deep Dive

9InfoWorld.com deep dive series W h i c h M B aa S i s r i g h t f o r yo u ?

Deep Dive

InfoWorld.com deep dive series 1 0

Client support
AnyPresence generates App UIs (or starter kits, if

you wish) for jQuery, Android (XML layout), and

iOS (storyboard), and it generates App SDKs for

Java, Android, HTML5, Windows Phone, Xamarin,

and iOS. The design environment refers to the

generated JavaScript/HTML5 SDK as “jQuery.”

In fact, what AnyPresence actually generates is

CoffeeScript that uses the Underscore, Back-

bone, and jQuery libraries. For example:

class AP.auth.Authentication
 _.extend @, Backbone.Events
if server ever responds with
401, assume the session expired
$.ajaxSetup
 complete: _.debounce ((xhr,
result) => @destroySession() if
xhr.status == 401 and result ==
‘error’), 150

AnyPresence generates back-end servers

for Ruby on Rails, and in the future will also

generate Node.js back ends, which will be a

good development. If the developer folklore and

publicly reported cases (such as LinkedIn) are

to be believed, Node tends to scale better than

Rails for many applications.

The AnyPresence environment can generate

deployments to Heroku (usually for a Rails

back end) to Amazon S3 (usually for HTML5

apps) to native iOS and Android apps with or

without Apperian security. You aren’t limited by

AnyPresence’s deployment choices, however. The

generated code can always be downloaded and

deployed elsewhere, assuming you have compat-

ible deployment environments.

Deployment options in AnyPresence include

Heroku (usually for Rails apps), Amazon S3

(usually for HTML5 apps), and native iOS and

Android apps with or without Apperian security.

Design and deployment
environment
The AnyPresence design environment exists

online and runs in most browsers. According

to the company, the environment supports

older browsers that are still in use at enterprise

customers, but I didn’t break out Windows XP

to test IE6. I tested in the most current version of

Chrome running on OS X. For the one day when

Chrome “broke” the site (and many similar

sites), I used Safari 7.1.

The design environment has a dashboard; a

settings screen; screens to create and monitor

environments, deployments, and builds; screens

to generate and deploy apps, back ends, and

SDKs; screens to add and manage data sources

and data objects; screens for authorization,

roles, and authentication strategy; screens for

stock and custom extensions; the interface

designer; and a customizable set of themes.

The data sources screen is where you add

integrations with enterprise applications (such as

Salesforce.com) and databases (such as Oracle).

I found the selection of data sources to be

good, and the implementation of the provided

MongoDB data store to be on par with other

MBaaS systems. What sets AnyPresence apart is

the way the data model integrates throughout

W h i c h M B aa S i s r i g h t f o r yo u ?

Deployment options in
AnyPresence include
Heroku (usually for
Rails apps), Amazon
S3 (usually for HTML5
apps), and native iOS
and Android apps with
or without Apperian
security.

AnyPresence’s app build selection screen.
Note the wide assortment of SDKs that can
be generated and the small assortment of
prototype app UIs that can be generated.

http://highscalability.com/blog/2012/10/4/linkedin-moved-from-rails-to-node-27-servers-cut-and-up-to-2.html

Deep Dive

InfoWorld.com deep dive series 1 1W h i c h M B aa S i s r i g h t f o r yo u ?

the design environment and into all the gener-

ated code.

The place you add most monitoring integra-

tions, such as Airbrake and New Relic, is hidden

deep in the Deployments/Addons tab, since it’s

dependent on the runtime environment, and

AnyPresence is designed to be environment-

agnostic. For Splunk integration, you have to

enable syslog output on the back end to push all

the logs/events into Splunk systems for reporting

and monitoring.

Generated code
I downloaded and examined the generated

code for an AnyPresence “hello, world” applica-

tion that I had built in the design environment

-- specifically a Rails back end, HTML5 mobile

app starter kit, and JavaScript SDK. I didn’t look

at all the other possible generated code, as the

number of combinations was daunting.

In the mobile app, I found most of the

interesting CoffeeScript code under app/javas-

cripts/app, and it was divided into application,

model, view, and controller directories. I didn’t

have any trouble reading the code once I found

it, although the excessive spacing gave away

the fact that it was generated. There seems

to be a mechanism for adding your own code

to “custom” subdirectories to allow it to be

automatically incorporated into the build, and

to avoid having it overwritten by future code

generation from the design environment.

The generated code used nine JavaScript

libraries: Backbone, jQuery, jQuery Mobile, large-

local-storage, NVD3, Offline.js, Q, the gener-

ated SDK (holding a generated AP class), and

Underscore (needed for Backbone). Comments

in the code indicated where to switch included

file sources around for local development. A

fairly full set of grunt commands is provided for

building the app, along with basic test scripts.

In the SDK, the Backbone, jQuery, large-

Amazon S3 deployment detail for an HTML5 app. From here we can view a
preview and download the generated files.

InfoWorld.com deep dive series 1 2

Deep Dive

W h i c h M B aa S i s r i g h t f o r yo u ?

local-storage, Q, and Underscore

libraries were in use, and the SDK

class library was generated. Logic

in the SDK implements collections,

relationships, authentication, and an

MVC (model view controller) model,

and generated HTML documenta-

tion is provided. Again, a fairly full set

of grunt commands is provided for

building the SDK, along with basic test

scripts to exercise, for example, the

CRUD (create, read, update, delete)

functionality.

In the Rails API, I found the MVC

model divided the way it’s supposed

to be, with the field definitions in the

model, for example. I found a good

set of tests, especially for the CRUD,

and the seed data declared in the

Ruby code but excluded from the test environ-

ment -- again, as it’s supposed to be structured.

In general, I found the generated code I

examined to be in line with best practices and

decently commented, although not always

formatted as I would have liked. While I was

initially concerned that the generated code

would not be maintainable without the design

environment, my fears were laid to rest when I

reviewed the source code.

I initially felt that the absence of a built-

in monitoring service might be a competitive

weakness, but I can’t argue with AnyPresence’s

integration with the best-of-breed monitoring

systems, many of which are already in use by

its customers. Also, I didn’t delve deeply into

the offline app capabilities of AnyPresence for

different platforms. Given its generation of

customized SDKs for multiple clients, generating

offline/online database synchronization for each

client seems like a lot to ask.

AnyPresence, while priced a bit higher than

the entry level of the other MBaaS systems I

reviewed for this series, offers more value than

these competitors for enterprises that need to

integrate their existing systems with mobile

applications. It is especially valuable for enter-

prises that wish to expose their APIs to partners

who can in turn use them in their own mobile

applications. n

InfoWorld.com deep dive series 1 2

A preview of
an HTML5 app
running in the
AnyPresence
designer. Note the
display of gener-
ated seed data.

Deep Dive

InfoWorld.com deep dive series 1 3

Appcelerator Titanium has been a player in

the mobile development space for several years,

with a JavaScript-based development environ-

ment that compiles to native code for iOS,

Android, and other targets. With the release of

Appcelerator Studio 3.3 and Appcelerator Plat-

form 2.0 in July, the company added a mobile

back end as a service (MBaaS) accompanied

by about 25 APIs, Node.js support, and online

analytics. Also, Appcelerator has published

interfaces to its MBaaS that developers can add

to apps built with native SDKs, though it hasn’t

yet supported native SDKs in its own Studio IDE.

“Studio” is short for any edition of Appcel-

erator Studio, the company’s enterprise-

oriented IDE; Titanium Studio, the company’s

free IDE; and Aptana Studio, the free Eclipse

plug-in on which the other two products are

based. Aptana was one of my favorite open

source JavaScript and Rails IDEs in its day,

before it was bought by Appcelerator, though

my affections have since moved on to more

modern IDEs and editors.

Services and APIs
The principal focus of this release of Appcel-

erator is its MBaaS and analytics. There are more

than 25 prebuilt APIs, including most of the

usual suspects such as push notifications and pair

storage, and extending to users, places, photos,

and social integrations. These cloud service APIs

are in addition to Appcelerator’s interfaces to

native device capabilities such as local storage,

media services, geolocation, contacts, and acceler-

ometer support. Furthermore, Appcelerator now

includes a layer on top of Node.js, called

Node.ACS, for building custom cloud services.

(ACS refers to Appcelerator Cloud Services.)

Early in Appcelerator’s development, some of

its Android APIs were coerced into looking like

W h i c h M B aa S i s r i g h t f o r yo u ?

Appcelerator is a
mobile cloud platform
in progress Appcelerator Platform 2

combines rich mobile client
support with the advantages
of Node.js, but lacks pre-built
integrations and full sync
support

http://www.infoworld.com/resources/16306/javascript/hands-on-with-10-javascript-editors-and-ides
http://www.infoworld.com/resources/16306/javascript/hands-on-with-10-javascript-editors-and-ides

Deep Dive

InfoWorld.com deep dive series 1 4W h i c h M B aa S i s r i g h t f o r yo u ?

their iOS equivalents. Not surprisingly, that didn’t

always work well. I’m not sure when these APIs

changed, but now the Appcelerator wrappers for

Android APIs seem to follow the Android model.

That’s good because they actually work reliably;

it’s bad because you have to include different

modules for Android builds than for iOS builds.

Appcelerator still supports BlackBerry, but I have

lost interest in BlackBerry development over

the last couple of years, as its market share has

essentially disappeared.

Dashboard and analytics
Developers can see a quick overview of app

installs, sessions, API calls, and crashes in the

online Appcelerator dashboard overview page.

Other parts of the dashboard allow for cloud

management, testing, performance metrics, and

analytics.

The Cloud panel shows usage, exposes data

management, displays API request and push

notification logs, lists custom services, and allows

for cloud configuration. The testing panel uses

SOASTA’s TouchTest as an integrated mobile

testing solution. The performance panel allows

you to monitor your apps; troubleshoot perfor-

mance, crashes, and exceptions; view crash

trends; integrate with bug tracking systems; and

configure your monitoring.

Developers can define and view Appcelerator

analytics online and optionally publish selected

analytics to the Appcelerator Insights app for

Appcelerator Platform’s
dashboard overview for

the demo Field Service
application. The crashes
were deliberately coded

into the app.

Deep Dive

InfoWorld.com deep dive series 1 5W h i c h M B aa S i s r i g h t f o r yo u ?

the iPad, typically for use by a manager. There

are five categories of analytics: real time, users,

sessions, events, and event funnels.

Appcelerator Insights allows you (or your

manager) to view published analytics on an

iPad. The most recent improvement in Insights

is the ability to view event funnels. If properly

constructed, event funnels can tell you how

users are progressing through your app, whether

they are getting to the key functionality, and if

not, where they are bogging down.

Appcelerator Platform allows you to build

custom back-end services using Studio and

Node.ACS. Node.ACS combines Node.js and

Express with interfaces to Appcelerator Cloud

Services and a model-view-controller (MVC)

framework. Appcelerator also allows you to run

plain Node.js applications on its cloud platform.

The Node.ACS support in Studio requires you

to have Node.js installed on your development

machine, and it tries to install acs with Node. On

my iMac, this failed. I eventually had to run this

rather scary command in Terminal:

sudo npm --unsafe-perm -g install
acs

Some developers at Appcelerator found

that for me, and it worked -- but using the

unsafe permissions flag to Node’s package

manager didn’t exactly make me feel warm and

fuzzy. Appcelerator claims this is a known but

uncommon Node.js bug; Node.js claims it’s a bad

install script. Finger-pointing doesn’t make me feel

warm and fuzzy, either, especially finger-pointing

at a free, open source software project to which

you’re adding commercial software.

Frameworks and API types
Appcelerator has multiple

frameworks on the client

side and multiple API

types for the cloud. At the

base level on the client,

Appcelerator offers the Titanium SDK, which

provides an interface between JavaScript and

native services. At a higher level, Appcelerator

offers the Alloy Framework, which is based

on the MVC architecture and contains built-

in support for Backbone.js and Underscore.js.

When you create a new client app from Studio,

you’ll typically generate one that uses Alloy.

On the cloud side, you can reach the Appcel-

erator Cloud Services using a REST API, via

bindings to the Titanium SDK, via Node.ACS

as discussed above, and via native SDK support

as discussed below. The REST API will always

work, though it’s the least convenient option.

You’ll mostly want to use REST calls to reach

new services that don’t yet have bindings to the

Titanium SDK.

Native SDK support
Appcelerator used to make a big deal about

Titanium’s ability to trans-compile JavaScript into

Appcelerator
Studio’s app
configuration
screen.

Using the acs
command to
publish an app
from within
Appcelerator
Studio.

Deep Dive

InfoWorld.com deep dive series 1 6W h i c h M B aa S i s r i g h t f o r yo u ?

native code for iOS and Android, and pooh-

poohed any need for Native SDK support. As

part of Appcelerator’s transition into having an

MBaaS, it now includes Native SDK support for

iOS and Android.

On iOS, you’ll have to add the Appcelerator

framework code to your Objective-C project,

import Appcelerator.h from your code, and call

various Objective-C classes starting with APS. On

Android, you’ll copy the Appcelerator framework

JAR file to your Java project, import the APSSer-

viceManager class, and call various Java classes

starting with APS. In both systems, working

from the provided examples and instructions

to add MBaaS functionality in the native SDK

tools is straightforward. However, none of this is

included in Appcelerator Studio. Rather, you use

Eclipse or Xcode for this editing. In the future, as I

understand it, Studio or some other Appcelerator

component might support actions to add the

appropriate stuff to Java and Objective-C projects.

Data import and offline/online
synchronization
Appcelerator can call REST and even SOAP

services using HTTPClient and its built-in parsing

routines. If you’ve set up a REST wrapper for a

database query, you can get the JSON data into

your app fairly easily. That wrapper might be

implemented on Node.js or on another server,

as in the case of a Web service extension to the

database server.

According to Appcelerator, from the MBaaS

side, the most common scenario is writing REST

services on Node.ACS that talk to the customer’s

data sources. Depending on the scenario,

Appcelerator sometimes discourages customers

from accessing their databases directly from

a mobile middle tier. (Usually those types of

customers immediately agree and recognize their

security team would shut down the idea.)

That begs the question of enterprise integra-

tions, however. A more serious MBaaS would

already have tested, integrated modules set up

to easily map the major databases to a form

consumable by its apps, certainly for Oracle, SQL

Server, MySQL, and Postgres. I view leaving this

as an exercise for the developer as a cop-out,

though writing RESTful database wrappers isn’t

rocket science, especially on Node.js.

Appcelerator says it has a few enterprise

connectors it sells on the MBaaS layer, such as

for SAP and Salesforce.com. And one of the

advantages of Node is the supply of community-

developed modules for many other sources

such as MySQL, SQL Server (which works on a

Windows server with Node.js), Postgres, and

several NoSQL databases.

Similarly, Appcelerator can use a local SQLite

database on a device, use pair storage, cache

in-memory, and detect when the device is online.

However, it has no complete framework in place

for handling intermittently connected apps,

especially not conflict resolution. According to the

company, most of its customers use Alloy models

to handle some of these duties.

Synchronization is admittedly a difficult

problem, but it’s one area where most mobile

developers need help from the vendor, and it’s

important in the real world. A more serious

MBaaS would at least provide hooks for code that

handles data entry conflict resolution, but Appcel-

erator hasn’t done that yet.

Appcelerator notes that it has a commercial

sync server available with a Microsoft Dynamics

connector attached, and it will expand this to all

supported data sources later this year. At least

the company is working on the problem.

Overall, I see Appcelerator as a mobile app

development tool company just beginning to

pivot into the MBaaS space. Most of the basic

pieces are in place, but Appcelerator hasn’t quite

finished the hard parts.  n

Examining the custom
objects in the MongoDB
database for the Field
Service demo app.

Deep Dive

InfoWorld.com deep dive series 1 7

FeedHenry boosts
enterprise mobile
applications with
rich client and tools
support, as well as
fast, scalable,
Node.js-based
back-end services

FeedHenry uses Node.js
to fortify mobile apps

W h i c h M B aa S i s r i g h t f o r yo u ?

A few years ago, the mobile enterprise appli-

cation platform (MEAP) seemed to be the likely

answer to the huge challenge of creating groups

of mobile applications that work together and

integrate with enterprise data. In hindsight, MEAP

systems, which typically combined a back-end

server and middleware stack with a client applica-

tion, seem excessively expensive and heavyweight.

The current trend is toward MBaaS (mobile

back end as a service) platforms, loosely coupled

with native, Web, and hybrid mobile applications.

An MBaaS -- which might be focused on business

applications, consumer applications, or both --

places much of the logic onto the mobile device,

while enforcing security and managing the data

at the back end. Even traditional MEAP vendors,

such as Kony, are now offering MBaaS platforms.

FeedHenry is a Node.js-based, enterprise-

oriented MBaaS and mobile application platform

with a wide array of integrations, both online

and offline development options, collaborative

app building, and a drag-and-drop form builder.

FeedHenry was spun off from the Irish Research

Institute in 2010. The company describes its

offering as a cloud platform for building mobile-

first solutions, both B2C and B2E, with a focus

on enterprise line-of-business apps. FeedHenry

claims to have global infrastructure on all major

clouds, as well as support for on-premise back-

end deployment.

Note that FeedHenry is priced only for

enterprise customers. The company does not

currently sell to independent developers or small

to midsized businesses.

FeedHenry has impressive customer apps in

its catalog. For example, Aer Lingus built a multi-

platform app for mobile check-in, flight search,

real-time status updates, and flight bookings.

The original app had a 10-week time to market.

The app integrates with eight back-end systems

through the FeedHenry cloud.

Built on Node.js
The FeedHenry back end is built on Node.js.

That was a bit ahead of its time in 2010, but is

quite fashionable now. Today Node.js is often

used for building fast, scalable network applica-

Deep Dive

InfoWorld.com deep dive series 1 8W h i c h M B aa S i s r i g h t f o r yo u ?

tions. Node has an event-driven, nonblocking

I/O model that makes it lightweight and efficient

compared to, say, Java Server Pages or ASP.Net.

Node lets developers make code asynchronous

without the hassle of threads and synchroniza-

tion. The Node community is growing fast, with

more than 70,000 public Node modules in the

ecosystem. Enough Node modules deal with

back-end data integration that FeedHenry can

boast lots of integration points without having to

build many of them internally.

On the downside, Node.js can be tricky to

debug. As a weakly typed dynamic language,

JavaScript doesn’t give you much in the way of

bug checking prior to deployment, although the

various JavaScript linting tools can help.

With FeedHenry 3, the online environment

integrates directly with GitHub. This carries a

number of meanings, all of them good. You can

get access to your source code from your own

computer and develop offline when it’s conve-

nient; check your local code back in, and it will

be reflected in the online repository. Teams can

collaborate on both the cloud and app sides of

a FeedHenry project without stepping on one

another’s changes. You can also build binaries of

an app in the cloud, as I’ll discuss later.

Many proponents of agile development insist

that teams need to be located in one place and

have continuous verbal communication. There’s

a certain amount of truth to that, and I’ve seen

it work amazingly well. On the other hand, many

projects -- proprietary enterprise software as

well as open source software projects, including

outsourced projects -- are developed successfully by

internationally distributed teams. GitHub is one of

the most widely accepted version control services

for globally distributed software development,

and I think the way FeedHenry has integrated with

GitHub is a step in the right direction. International

teams often use a bug reporting and ticketing

system, as well as a source code control system. It

would be useful for FeedHenry to integrate with

one of those, too.

API management and MBaaS
MBaaS is a small part of FeedHenry’s bag of

tricks. Nevertheless, FeedHenry offers a strong

mobile back-end service. Part of what makes it

scalable is the use of Node.js, which I discussed

above. Further, FeedHenry uses MongoDB for its

data store, which is also highly scalable. Feed-

Henry’s servers typically don’t even break a sweat

under Black Friday-level loads.

FeedHenry back-end code is relatively simple,

if you understand Node.js. Here’s an example

main (application.js) from the automatically

generated Welcome app:

var mbaas = require(‘fh-mbaas-express’);

var express = require(‘express’);

// Securable endpoints: list the endpoints which you want to make securable here

var securableEndpoints = [‘hello’];

var app = express();

app.use(‘/sys’, mbaas.sys(securableEndpoints));

app.use(‘/mbaas’, mbaas.mbaas);

app.use(‘/cloud’, require(‘./lib/cloud.js’)());

// You can define custom URL handlers here, like this one:

app.use(‘/’, function(req, res){

 res.end(‘Your Cloud App is Running’);

});

// Important that this is last!

app.use(mbaas.errorHandler());

var port = process.env.FH_PORT || process.env.VCAP_APP_PORT || 8001;

var server = app.listen(port, function(){

 console.log(“App started at: “ + new Date() + “ on port: “ + port);

});

http://www.infoworld.com/article/2608240/open-source-software/how-joyent-debugs-node-code.html
http://www.infoworld.com/article/2608240/open-source-software/how-joyent-debugs-node-code.html
http://www.infoworld.com/article/2608907/application-development/github-s-new-ceo--we-re-serious-about-the-enterprise.html

Deep Dive

InfoWorld.com deep dive series 1 9W h i c h M B aa S i s r i g h t f o r yo u ?

You’ll note the lack of explicit asynchronous

code in this example, yet it’s highly scalable stuff.

You’ll also recognize the use of the open source

Express Web application framework.

Toolkit support
FeedHenry 3 supports native SDKs for iOS,

Android, and Windows Phone 8, along with

hybrid apps using Apache Cordova, HTML5

mobile Web apps, and Sencha, Xamarin, and

Appcelerator Titanium. The way the JavaScript

interface to the FeedHenry cloud works, it would

be hard to find a JavaScript framework that isn’t

compatible.

When writing for FeedHenry in JavaScript,

you include the feedhenry.js script in your HTML,

initialize it with $fh.init, then call cloud functions

from the $fh namespace. For example:

$fh.act({

 act: ‘sayHello’

}, function(res) {

 alert(“Cloud says : “ + JSON.stringify(res.

say));

}, function(msg, params) {

 alert(‘An error occured: ‘ + msg);

});

This client code assumes that your cloud

code has implemented and exported a sayHello

function.

Not all apps that use an MBaaS started out

that way. FeedHenry understands that, and

thus provides a mechanism for

importing apps, which offers

a choice of native iOS, native

Android, PhoneGap, basic Web

app, and advanced Web app

import types. Import methods

include cloning an existing

Git repo, uploading a Zip, and

creating an app with a blank repo,

then pushing the code there.

Builders, templates,
and integrations
One of the headaches that

comes with mobile develop-

ment, especially hybrid mobile

development, is installing and

maintaining the SDKs for all the

mobile platforms you wish to

target. Adobe PhoneGap Build

offers one solution for this. Feed-

Henry offers its own answer.

The FeedHenry build service can turn an

HTML5 app into binaries for Android, BlackBerry,

iPhone, iPad, iOS (universal), and Windows

Phone. Each binary can connect to one of your

MBaaS instances, and it can be built for devel-

opment, distribution, release, or debugging,

depending on the platform. For iOS builds, you

need to supply the appropriate credentials.

FeedHenry 3 adds a drag-and-drop form

builder with a good assortment of templates to

use as starting points. While forms are not the

most flexible kind of mobile application, they

are appropriate for many business applications

requiring data input. Forms built via drag-and-

drop, such as the one FeedHenry implements,

can become simple apps very quickly -- often

within hours.

On the other hand, I found only a few

full-fledged app templates. According to the

company, new clients currently receive some

mentoring or training to help get their first real

app off the ground, but FeedHenry is in the

process of developing templates for industries

FeedHenry
includes an online
editor, supporting
offline tools, and
a command-line
interface. Here we
see the mobile app,
with a code editor
in the middle of the
screen and a preview
at right. You can
configure the back-
end service in another
pane of the online
interface.

Deep Dive

InfoWorld.com deep dive series 2 0W h i c h M B aa S i s r i g h t f o r yo u ?

such as health care, where there is more interest

in purchasing solutions than in purchasing plat-

forms or tools.

FeedHenry 3 supports Apache Cordova 3

and its plug-ins for building hybrid apps for iOS,

Android, and Windows Phone 8. If you want to

specify the plug-ins used, add a config.json
file with a plugins key to your project. If you

don’t specify the plug-ins you want, FeedHenry

will use a standard list of 30 or so plug-ins,

which will most likely increase your app building

time and the size of your app.

FeedHenry lists more than 50 Node.js

plug-ins in its curated modules list. That list

includes interfaces to most major relational

and NoSQL databases, as well as to Amazon,

Google, Rackspace, Salesforce and other SaaS

providers, several messaging providers, several

social networks, and assorted tools. In general,

the back-end integration options look strong,

although I haven’t tested any of them in depth.

If the curated list doesn’t contain what you

need, more than 50,000 module and code snip-

pets are available, contributed by the Node.js

community.

Once you have integrated a back-end server

for one project, you can expose your RESTful

APIs to any of your other projects.

Cloud deployment and management
FeedHenry runs on all major public and private

clouds, and on a wide range of IaaS and

PaaS infrastructures. FeedHenry has a HIPAA-

compliant cloud, as well as live clusters in both

Europe and North America.

The company claims its cloud portability

eliminates vendor lock-in. That’s probably true

with respect to the cloud vendors, but not for

FeedHenry itself. Cloud portability is also not

unique to FeedHenry. Among competing MBaaS

offerings, Kinvey can say the same.

FeedHenry can encrypt locally cached data on

the client with the use of AES/RSA algorithms,

it supports HTTPS encryption on the pipeline

between the app and the cloud, and it provides

endpoint security. It has a full set of authentica-

tion and session management APIs, including

support for LDAP, Active Direc-

tory, and OAuth credentials. Of

course, you can find plenty of

encryption plug-ins for Node.js,

which can be used as needed.

Another potential security

hole is between the MBaaS

and the enterprise’s own

back-end systems. FeedHenry

supports IP address punch-

through, VPNs, firewalls,

DMZs, approved data centers,

and approved data center loca-

tions to address this issue.

Incorporating a supported

third-party enterprise mobility

management product, such

as AirWatch or MobileIron, is

a simple matter of checking a

box in the FeedHenry distribu-

tion configuration.

Finally, FeedHenry does

a good job of reporting app

and cloud usage, including app installs, app

start-ups, cloud requests, and active users by

time, platform, and geography. In addition,

FeedHenry monitors cloud endpoints in real time

and provides full auditing. On the other hand,

FeedHenry 3 adds
a drag-and-drop
form builder. Once
you have created
a FeedHenry
form, you can
graphically edit
the form, pages,
fields, rules, and
notifications
online.

Deep Dive

InfoWorld.com deep dive series 2 1W h i c h M B aa S i s r i g h t f o r yo u ?

FeedHenry doesn’t supply a user data reporting

or charting module. For that, you would have to

use reporting and charting modules supplied by

your database vendor or a third party.

As we’ve seen, FeedHenry is more than an

MBaaS, but its Node.js-based mobile back-end

service is lightweight, fast, highly scalable, and

loaded with enterprise integrations. The Git inte-

gration aids team development, and FeedHenry

supports almost any kind of mobile app you’d

want to build. Its drag-and-drop forms creator

makes building simple data entry apps a snap.

What FeedHenry lacks at this point is a broad set

of fully worked-out vertical starter solutions, but

the company is progressing on that count.  n 

Deep Dive

InfoWorld.com deep dive series 2 2W h i c h M B aa S i s r i g h t f o r yo u ?

Kinvey pairs rich mobile client and tools support with flexible
back-end services, but external integrations are limited

Kinvey boosts
enterprise mobile apps

Kinvey bills itself as a complete mobile

and Web app platform. It has extensive client

support, integrates with the major enterprise

databases, and offers a back-end data store, a

file store, push notifications, mobile analytics,

iBeacon support, and the ability to run custom

code on the back end.

According to the company, Kinvey sells to IT

as its primary customer because it provides an

enterprise platform, not for one or two apps but

for tens and hundreds of apps for an enterprise.

However, it also engages and supports the

developer community app by app. Thus pricing is

available for individuals and independents, as well

as for smaller businesses and large enterprises.

Client support
Kinvey supports native, hybrid, and HTML5 apps.

It has native toolkit support for iOS and Android.

In addition, it supports HTML5, AngularJS, Back-

bone.js, Node.js, Apache Cordova/PhoneGap, and

Appcelerator Titanium, and it provides a REST API.

(PhoneGap is compatible with AngularJS 1.2.3

and later, and with all versions of Backbone.js.)

To set up a native iOS 6 or iOS 7 project to

use the Kinvey back end, you need to download

the KinveyKit framework, install it into your

Xcode project, and set your project to link with

the eight required libraries. You should also copy

the KinveyKit documentation into Xcode’s docu-

mentation directory. Then you’ll need to import

KinveyKit in your code and call [KCSClient
sharedClient] initializeKinveySer-
viceForAppKey to connect your app with the

Kinvey service, using the correct app key, app

secret, and options. You can also use the Kinvey

REST API in iOS projects.

To set up a native Android 2.3 or higher

Kinvey project, download the latest Kinvey

library and copy the JAR files into your project

libs folder. To initialize the Kinvey service,

instantiate a new Client.Builder(), with

a kinvey.properties file present in your

projects assets folder that holds the correct app

key, app secret, and options.

For most HTML5 apps and JavaScript frame-

Deep Dive

InfoWorld.com deep dive series 2 3W h i c h M B aa S i s r i g h t f o r yo u ?

works, you’ll want to serve the appropriate

Kinvey JavaScript library from Kinvey’s content

delivery network as part of your app initializa-

tion. Then you’ll need to call Kinvey.init()
or $kinvey.init(), depending on the frame-

work, using the correct app key, app secret, and

options.

For the REST API, you’ll probably start with

GET /appdata/:appKey, using basic authen-

tication over HTTPS, to handshake with the

service. The rest of your logic will need to start

with a login request to collect an authorization

token from the service, then all the other REST

calls will use the authorization token.

Kinvey uses Promises to manage asynchro-

nous JavaScript flows, simplifying the client code.

Basically, a Promise is a proxy object for the result

of an asynchronous operation. When you’re

ready to use the result, the then method can be

called to process a successful operation, and the

else method can be called to process an unsuc-

cessful operation. Promises are currently imple-

mented in mobile browsers and the Chrome,

Firefox, and Opera desktop browsers. According

to Kinvey, even the sort of enterprise that is still

standardized on IE6 for its Web apps is able to

use Promises in AngularJS

PhoneGap apps.

Cloud code
Kinvey cloud code is

written in JavaScript. In

addition to using standard

JavaScript and external

services, it can use Kinvey

APIs for logging, collec-

tion access, sending push

notifications, sending

email, validating requests,

date and time functions,

doing asynchronous

processing, rendering a

Mustache template, and

obtaining the back-end

context. Cloud code can live in hook processing

functions and custom endpoints. Cloud code is

versioned internally in Kinvey.

As a simple example, the following custom

cloud endpoint handler responds to any request

by asking for the real-time information feed for

the Boston MBTA Red Line subway, parsing the

JSON response, and sending that JSON to your

client.

function onRequest(request,response,mod

ules){

 var req = modules.request;

 req.get(‘http://developer.mbta.com/Data/

Red.json’, function(error, resp, body){

 if (error){

 response.body = {error: error.

message};

 response.complete(400);

 return;

 }

 response.body = JSON.parse(body);

 response.complete(resp.status);

 });

}

Scheduled code can run against your custom

endpoints. Scheduled code is commonly used

to aggregate, archive, and clean up data; to pull

data from a third-party API into Kinvey; or to

send out a batch of emails or push notifications.

Kinvey collections use MongoDB, which
provides a schema-less, no-SQL database for
use by your apps. This screen lets you create
and design collections (only the creation step
is necessary) and choose whether to enable
or bypass your database business logic.

https://promisesaplus.com/
http://mustache.github.io/

Deep Dive

InfoWorld.com deep dive series 2 4W h i c h M B aa S i s r i g h t f o r yo u ?

Kinvey has flexible, hook-based, back-end business logic. The hook-processing pipeline runs as follows:

1. 	Request from the client to the Kinvey back end

2.	 Authentication of the client (verify that client has access to this back end)

3.	 Pre-processing hooks

4.	 Database actions

5.	 Post-processing hooks

6.	 Clean-up and response formatting

7.	 Response returned to the requesting client

Kinvey has six hook-processing functions that you can implement:

Kinvey only guarantees that the preprocessing

hooks will be called, as an error in the database

actions will cause the postprocessing hooks to be

skipped.

Cloud database, data links,
and integrations
Kinvey implements a simple JSON key-value

data store with entities and collections, using

MongoDB. In the business and enterprise

versions, Kinvey also has data links for Oracle,

SQL Server, Salesforce, and Microsoft Dynamics

CRM, plus a generic connector. The data link

architecture is defined as a REST API.

Data links connect a MongoDB collection

specifically marked for data integration with

your database, and forward CRUD (create, read,

update, and delete) requests to the database.

(A few customers have used a data integration

collection to cache the data for performance

reasons, but mostly the data integration collec-

tion does not hold onto the data.)

Kinvey currently supports two classes of inte-

grated services: location services like Google Places

and Foursquare, and social services like Facebook

Open Graph. That doesn’t mean you’re restricted

to public APIs, but it does mean that you can’t use

other classes of service, except for the data and

auth links we’ve already discussed.

Push messaging support in Kinvey requires

you to perform external configuration in Google

Cloud Messaging for Android or Urban Airship for

iOS. Once you’ve done that and connected the

service to your Kinvey cloud app, Kinvey takes care

of all push messaging requests through its own

APIs. Note that push messages will fail in the iOS

emulator, but should succeed in real devices and in

an Android emulator with the Google API enabled.

Deep Dive

InfoWorld.com deep dive series 2 5W h i c h M B aa S i s r i g h t f o r yo u ?

Kinvey handles offline data synchronization

in a basic way. You can enable sync in your appli-

cation initialization options and tell Kinvey when

your application goes online and offline.

Kinvey.init({

 appKey : ‘App Key’,

 appSecret : ‘App Secret’,

 sync : {

 enable : true,

 online : navigator.onLine // The initial

application state.

 }

});

// Switch application state when the on- and

offline events fire.

$(window).on({

 offline : Kinvey.Sync.offline,

 online : Kinvey.Sync.online

});

Kinvey has an automated control setup for

offline data synchronization, in which data is

automatically pulled from the cache if the appli-

cation is offline. If the application is online, data

is pulled from the network and stored in the

cache. You can turn this off and handle it your-

self. You can also set important parameters such

as the cache maxAge, which determines when a

cached value expires and must be refreshed from

the network.

Synchronization of offline data requires care in

conflict resolution. Using automated control, your

Kinvey app will attempt to synchronize any locally

stored data when the device goes online again,

but if the server data has also changed you’ll have

a conflict. You can set your conflict resolution

policy to clientAlwaysWins, serverAlwaysWins, or

a custom conflict resolution function.

Cloud deployment and management
Kinvey supports deploying on almost any cloud,

including private clouds. That includes deploying

to HIPAA-compliant facilities and facilities located

entirely in the EU. Even Kinvey’s multitenant

cloud is considered secure enough for most

apps, as the company does end-to-end encryp-

tion, and companies that use data links can keep

their data in databases behind their own fire-

walls. If you have a Google App Engine server,

Here we see an
example Kinvey app
for iOS, using the
REST API, opened
in Xcode. This is a
bare-bones demo
that does nothing
other than save and
load some data to
and from the cloud-
based Kinvey data
store.

Deep Dive

InfoWorld.com deep dive series 2 6

Overall,
Kinvey is
a worthy
competitor to
FeedHenry for
enterprises.

W h i c h M B aa S i s r i g h t f o r yo u ?

you can link it to your Kinvey back end.

Authentication can be done internally by

Kinvey, or through LDAP or Active Directory in

the business and enterprise versions. Kinvey

also supports Facebook, Twitter, Google+, and

LinkedIn identities through OAuth.

In addition to the collection-level permissions

shown in Figure 5, Kinvey supports entity-level

permissions, global access control, and reader/

writer lists. If you are using Kinvey’s User Groups

in your app, you can manage group reader/

writer permissions.

The online Kinvey documentation includes

guides, tutorials, samples, and references. In

general, I was able to find the information I

needed, but it wasn’t always easy. All the docu-

mentation is organized by the client technology.

That helps to keep you from being confused by

seeing different notations at once, but makes

it hard to compare the capabilities and samples

of different clients. According to the company,

most of Kinvey’s users already have a favorite

client technology, which means that organizing

the documentation by client is the right thing

to do. However, Kinvey is now developing more

documentation in the form of high-level white

papers and other traditional publications, to

meet the expectations of enterprises.

Kinvey offers an online app cost estimator,

which is designed to illustrate the development

savings you can realize from using an MBaaS. If

you pick all the highest-complexity choices (five

client platforms, 12 pages in the app, and so on),

this estimator will tell you that a DIY app would

cost you about half a million dollars, while an

app using Kinvey for the back end would cost

about half that. Take that with a grain of salt,

and look at the formulas behind the estimates

before giving the results any credence.

Bearing in mind the potential savings,

Kinvey’s pricing is straightforward for indepen-

dents and smaller businesses, starting with free

and running to $1,500 per month per back end.

Note that many apps can share a single back

end, so this pricing is much more favorable to

the customer than per-app plans. According to

the company, the $1,500-per-month business

plan can be considered a starting point for nego-

tiations of enterprise plans.

Kinvey supplies basic analytics and usage

metrics for users, storage, and API calls for all

plans. Kinvey’s Premium Analytics add-on, which

I did not test, enables you to drill down from

high-level aggregate analytics, through a host

of different user segments, to the behaviors and

actions of individual users.

Overall, Kinvey is a worthy competitor to

FeedHenry for enterprises. From the perspective of

an agency, independent developer, or small busi-

ness, Kinvey offers reasonably priced starter plans,

while FeedHenry is laser-focused on enterprise

customers. Kinvey lacks the nice online drag-and-

drop forms builder found in FeedHenry, but Feed-

Henry forms are not useful for serious, large apps

-- they are mostly for simple data collection apps,

such as customer surveys or site inspections. n

http://www.kinvey.com/app-cost-estimator

InfoWorld.com deep dive series 2 7W h i c h M B aa S i s r i g h t f o r yo u ?

Deep Dive

Parse was once the poster child for mobile

back end as a service (MBaaS), and despite its

recent acquisition by Facebook, it is still a viable,

low-friction MBaaS for limited-volume consumer

apps. On the plus side, it is well documented,

it has good native client support, and it has a

JavaScript client SDK based on Backbone.js.

Parse also runs JavaScript code on the back end,

which offers developers the option of an all-

JavaScript application stack.

On the minus side, Parse is missing big pieces

that are necessary for business apps, such as data

integration, offline operation, and online/offline

synchronization. At the same time, its pricing seems

geared to lower-volume apps. If you happen to

create the next viral hit, Parse will cost you plenty as

the usage of your app picks up.

Client support
Parse supports native mobile, JavaScript, and

desktop apps. On the mobile side, it has native

support for iOS, Android, and Windows Phone 8.

On the desktop, it supports OS X and Windows

8 (.Net), as well as Unity games.

The Parse JavaScript SDK is based on the

Backbone.js framework. According to the

company, most existing Backbone.js apps can

work with Parse, pending only minor changes.

Parse also has a REST API, which can be made

to work on almost any client, in any language

that supports HTTP requests, including the Curl

command-line utility.

In addition to its own official client API

libraries, Parse has a number of third-party,

community-supported client libraries. These

include support for .Net, ActionScript, Appcel-

erator Titanium, Clojure, Corona, Java, additional

JavaScript APIs, Temboo, PHP, Python, Qt, Real-

Basic, Ruby, and WebOS.

Cloud code
Parse lets you run JavaScript code in the cloud,

using the same Parse JavaScript SDK as its client,

which is based on the Backbone.js frame-

work. Rather than have you routinely edit your

cloud code in a browser, à la FeedHenry and

Kinvey, Parse supplies a command-line tool for

managing code in Parse Cloud and allows you

to use your favorite JavaScript editor on your

computer. However, you can view your code in

your Dashboard, which is also where you can

view your logs.

On OS X and Linux, a single tool, called

Parse, installs to /usr/local/bin/parse. On

Facebook’s
MBaaS shines for
consumer mobile
applications, but
misses some must-
haves for business
apps

Parse delivers on mobile apps,
					 but not for business

http://www.infoworld.com/resources/16299/mobile-development/download-the-mobile-app-development-in-the-cloud-d
http://www.infoworld.com/resources/16299/mobile-development/download-the-mobile-app-development-in-the-cloud-d

Deep Dive

InfoWorld.com deep dive series 2 8W h i c h M B aa S i s r i g h t f o r yo u ?

Windows, the Parse tool installs a ParseCon-

sole, which launches a Parse-aware PowerShell

session; the first session adds Parse to PowerShell

for future use. The command-line tool Parse is an

app scaffold generator, app deployment tool, log

printer, app rollback tool, and self-updater.

Your cloud code resides in main.js after

running parse new. The default is a “hello,

world” program:

Parse.Cloud.define(“hello”,
function(request, response) {

response.success(“Hello world!”);
});

You can push this to the cloud with parse

deploy. Once it has successfully deployed, you

can use any Parse client to run it, including a

simple REST call. The tutorial in your Parse Web

console will generate sample code for you with

the correct credentials in several languages.

Here’s the Python version with my credentials

obscured:

importjson,httplib
connection = httplib.

HTTPSConnection(‘api.parse.com’,
443)

connection.connect()
connection.request(‘POST’, ‘/1/

functions/hello’, json.dumps({
 }), {
 “X-Parse-Application-Id”:

“TRZxxxxxx”,
 “X-Parse-REST-API-Key”:

“Ajyetxxxxxx”,
 “Content-Type”: “applica-

tion/json”
 })
result = json.loads(connection.

getresponse().read())
print result

“Hello, world” does nothing but demon-

strate that you can call code in the Parse Cloud,

but Cloud functions can be useful if you pass

them parameters and have them do database

lookups and calculations on the data. If you need

to do more complicated tasks, you’ll probably

want to break your application up into multiple

.JSfiles and load them from main.js using

require() statements.

A Parse Cloud application log viewed in the Parse Dashboard. The same information
can be viewed from the command-line interface.

Parse Cloud code is
written in JavaScript.
Here we see version

2 of “Hello” in the
Parse Dashboard, as

uploaded from my
computer.

Deep Dive

InfoWorld.com deep dive series 2 9W h i c h M B aa S i s r i g h t f o r yo u ?

Key/value storage
Key/value pair storage in the Parse cloud is

simple to use. The details vary with the client

SDK, but this Java code for Android is typical:

ParseObject testObject =
newParseObject(“TestObject”);

testObject.put(“foo”, “bar”);
testObject.saveInBackground();

The resulting data can be retrieved from any

app with access to the data and viewed in the

Parse Dashboard.

You can define Parse.Cloud.before-
Save handler functions to perform server-side

data validation, and possibly apply data-modi-

fication rules, such as restricting the length of

strings or removing forbidden characters. To take

actions after data has been saved, define Parse.
Cloud.afterSave handler functions. Similarly,

you can control object deletion by handling the

Parse.Cloud.beforeDelete event, and take

action after object deletion, such as logging, with

a Parse.Cloud.afterDelete handler. These

event handlers have much the same flavor as

Kinvey’s hook-processing functions.

Parse Cloud functions will be killed after

15 seconds of wall clock time. The before-

Save, afterSave, beforeDelete, and afterDelete

functions will be killed after three seconds of

runtime. To get around these limits, you can

define a background job, Parse.Cloud.job. Back-

ground jobs are terminated after 15 minutes of

runtime. You can schedule background jobs from

your Parse Dashboard.

Standard Parse Cloud functions take param-

eters in JSON. If you need to use a different

format, you can write custom Webhooks and

call the Express Web application framework to

process input.

Parse uses a NoSQL data store, but it

supports relationships: one to one, one to

many, and many to many. These can be imple-

mented with pointers, arrays, Parse relations,

and join tables. Parse supports nine simple data

types, including null, and a given column can

be any data type when first stored. However,

Parse will lock the type of that field to the initial

type after the first value has been stored. There

are two ways to store binary data in Parse: as a

byte stream or as a file.

Push notifications
Parse can send push notifications to iOS,

Android, Windows 8, and Windows Phone 8.

In each case, you’ll have to provision your push

server, then provide the certificate or credentials

to your app. For iOS, you need to provision on

the Apple Developer site. For Android, you use

Google Cloud Messaging where supported by

the device; otherwise the messages come from

the Parse server. Windows RT and Windows

Phone apps can receive push notifications from

Microsoft push servers. A JavaScript client can’t

receive push notifications.

Users and roles
Parse has a fairly complete user system

predefined, including the usual sign-up and

email verification, along with a provision for

anonymous users. A system of ACLs controls

what data individual users can read and write.

For more complicated use cases, Parse supports

roles, with a separate layer of ACLs for the roles

and a hierarchy of roles.

Not surprisingly, given that Parse belongs

to Facebook, it has good support for social

account linking -- including Twitter. In each

The Parse Cloud data
browser lets you import

bulk data; add classes,
columns, and rows; and

view filtered data.

http://expressjs.com/

Deep Dive

InfoWorld.com deep dive series 3 0

While I don’t
see Parse as
the top MBaaS
option for most
businesses, I
can see Parse
as an easy,
low-cost way
to prototype
the back end of
a mobile app,
especially a
consumer app.

W h i c h M B aa S i s r i g h t f o r yo u ?

case, you must have an app set up on the social

networking platform to enable the OAuth

authentication.

Parse supports in-app purchases only on iOS.

Oddly, Parse currently supports a local data store

only on Android, although support for a local

data store on iOS is planned.

Integrations
Parse boasts it can do double duty as a Web

host. That’s nice, but it isn’t exactly a compel-

ling consideration for choosing a mobile back-

end service.

Parse has nine prefab integrations with

other services. Three of them -- Mailgun,

Mandrill, and SendGrid -- are for sending email.

Stripe is for charging credit cards. Twilio sends

SMS messages and voice messages. In addition,

Parse has third-party modules for Cloudinary,

Instagram, and Paymill.

As far as I can tell, implementing enterprise

data integration with Parse requires writing a

REST Web service wrapper for the data source

and a JavaScript module for Parse. That isn’t

hard, but it isn’t convenient, either. At one point,

prior to the Facebook acquisition, Parse had a

Web page that talked about how you could do

enterprise data integration yourself. That’s gone

now, and Parse isn’t even pretending to have

enterprise data integration.

I haven’t seen any options for hosting Parse

other than its own multitenant cloud. I can’t see

it being used for apps that need to be HIPAA-

compliant or for apps restricted to data located

in the European Union.

Parse now has usage-based pricing, ranging

from free for low usage to $1,700 per month

per app for 200 requests per second, plus five

centers per 1,000 unique push messaging

recipients per month over the first million. That’s

quite reasonable for many apps, but I can see

a popular consumer app blowing through the

limits, and I can’t see a large business wanting

those kinds of limits for its important apps. On

the other hand, vendors of successful apps and

large businesses are often in a position to nego-

tiate pricing.

While I don’t see Parse as the top MBaaS

option for most businesses, I can see Parse as an

easy, low-cost way to prototype the back end

of a mobile app, especially a consumer app. The

questions in my mind are whether it makes sense

to start with a back end that lacks important

capabilities that you may need later, and whether

it makes sense to start with a back end that may

become too expensive for an app that’s popular

but not a big moneymaker.  n

Martin Heller is a contributing editor for Info-

World reviews.

