
Java 101 primer:
Composition and inheritance

Use composition to overcome the problem with inheritance

BY J E FF FR I E S E N, JAVAWO R L D, O C TO B E R 2015

Java 101 primer: Composition and inheritance

2

In “Java 101: Inheritance in Java, Part 1,” you learned
how to leverage inheritance for code reuse, by
establishing is-a relationships between classes. This
free Java 101 primer focuses on composition, a
closely related programming technique that is used
to establish has-a relationships instead. Whereas
inheritance extends the features of one class to
another, composition allows us to compose a class
from another class. The distinction may seem subtle,
but it will make more sense once you see it in code.

Download the source code for “Java 101 primer: Composition
and inheritance.” Created by Jeff Friesen for JavaWorld.

Has-a versus is-a relationships

The premise in composition is that one class has a field whose type
is that of another class. For example, Vehicle has a String field
named make. It could also have an Engine field named engine and a
Transmission field named transmission:

class Vehicle

{

 private String make;

 private Engine engine;

 private Transmission transmission;

 // ...

}

http://www.javaworld.com/article/2987426/java-101-inheritance-in-java-part-1
http://images.techhive.com/assets/2015/10/21/jfriesen-jw-j101-composition-primer_src.zip

Java 101 primer: Composition and inheritance

3

class Transmission

{

 // ...

}

class Engine

{

 // ...

}

In this example, we would say that a vehicle is composed of a
make, an engine, and a transmission because it has a make field, an
engine field, and a transmission field.

In addition to composing classes from other classes, you can use
this technique to compose objects from other objects, by storing
object references in another object’s fields.

Composition techniques

This primer demonstrates using composition to overcome
a well-known problem with Java inheritance. For a more
in-depth introduction to composition techniques, see the
JavaWorld classic “Inheritance versus composition: Which one
should you choose?”

The problem with inheritance

The problem with inheritance is that it breaks encapsulation. You will
recall from “Java 101: Classes and objects in Java” that encapsulation
refers to the combining of constructors, fields, and methods into
a class’s body. In inheritance, a subclass relies on implementation
details in its superclass. If the superclass’s implementation details

http://www.javaworld.com/article/2076814/core-java/inheritance-versus-composition--which-one-should-you-choose-.html
http://www.javaworld.com/article/2076814/core-java/inheritance-versus-composition--which-one-should-you-choose-.html
http://www.javaworld.com/article/2979739/learn-java/java-101-classes-and-objects-in-java.html

Java 101 primer: Composition and inheritance

4

change, the subclass might break. This problem is especially serious
when a developer doesn’t have complete control over the superclass,
or when the superclass hasn’t been designed and documented with
extension in mind (see “Java 101: Inheritance in Java, Part 2” for more
about working with superclasses).

To understand this problem, suppose you’ve purchased a library of
Java classes that implement a contact manager. Although you don’t
have access to their source code, assume that Listing 1 describes
the main CM class.

Listing 1. Implementing part of a contact manager

public class CM

{

 private final static int MAX_CONTACTS = 1000;

 private Contact[] contacts;

 private int size;

 public CM()

 {

 contacts = new Contact[MAX_CONTACTS];

 size = 0; // redundant because size is

automatically initialized to 0

 // adds clarity, however

 }

 public void addContact(Contact contact)

 {

 if (size == contacts.length)

 return; // array is full

 contacts[size++] = contact;

 }

http://www.javaworld.com/article/2987584/java-101-inheritance-in-java-part-2

Java 101 primer: Composition and inheritance

5

 public void addContacts(Contact[] contacts)

 {

 for (int i = 0; i < contacts.length; i++)

 addContact(contacts[i]);

 }

}

The CM class stores an array of contacts, with each contact described
by a Contact instance. For this discussion, the details of Contact
aren’t important; it could be as trival as public class Contact {}.

Libraries and public classes

If you’re wondering why I declared CM public, it’s because
I believe that a future version of CM could be stored in a
package, also known as a library in this example. In a package,
only public classes can be accessed by external applications.
(Helper classes, which are designed to support public classes,
and which are not accessible to applications, are not declared
public.) I would apply the same rationale to constructors and
methods that might be called by an external application.

Now suppose you wanted to log each contact in a file. Because
a logging capability isn’t provided, you extend CM with the
LoggingCM class below, which adds logging behavior in overriding
addContact() and addContacts() methods.

Listing 2. Extending the contact manager with support for logging

public class LoggingCM extends CM

{

 // A constructor is not necessary because the Java

compiler will add a

 // no-argument constructor that calls the superclass’s

Java 101 primer: Composition and inheritance

6

no-argument

 // constructor by default.

 @Override

 public void addContact(Contact contact)

 {

 Logger.log(contact.toString());

 super.addContact(contact);

 }

 @Override

 public void addContacts(Contact[] contacts)

 {

 for (int i = 0; i < contacts.length; i++)

 Logger.log(contacts[i].toString());

 super.addContacts(contacts);

 }

}

The LoggingCM class relies on a Logger class (see below) whose
void log(String msg) class method logs a string to a file. A
Contact object is converted to a string via toString(), which is
passed to log():

Listing 3. log() outputs its argument to the standard output stream

class Logger

{

 static void log(String msg)

 {

 System.out.println(msg);

 }

}

Java 101 primer: Composition and inheritance

7

Although LoggingCM looks okay, it doesn’t work as you might expect.
Suppose you instantiated this class and added a few Contact
objects to the object via addContacts():

Listing 4. The problem with inheritance

class CMDemo

{

 public static void main(String[] args)

 {

 Contact[] contacts = { new Contact(), new

Contact(), new Contact() };

 LoggingCM lcm = new LoggingCM();

 lcm.addContacts(contacts);

 }

}

If you run this code, you will discover that log() outputs a total
of six messages; each of the expected three messages (one per
Contact object) is duplicated.

What happened?

When LoggingCM’s addContacts() method is called, it first calls
Logger.log() for each Contact instance in the contacts array
that is passed to addContacts(). This method then calls CM’s
addContacts() method via super.addContacts(contacts);.

CM’s addContacts() method calls LoggingCM’s overriding
addContact() method, one for each Contact instance in its
contacts array argument. The addContact() then executes Logger.
log(contact.toString());, to log its contact argument’s string
representation, and you end up with three additional logged messages.

Java 101 primer: Composition and inheritance

8

Method overriding and base-class fragility

If you didn’t override the addContacts() method, this problem
would go away. But in that case the subclass would still be tied
to an implementation detail: CM’s addContacts() method calls
addContact().

It isn’t a good idea to rely on an implementation detail when that
detail isn’t documented. (Recall that you don’t have access to CM’s
source code.) When a detail isn’t documented, it can change in a
new version of the class.

Because a base class change can break a subclass, this problem is
known as the fragile base class problem. A related cause of fragility
(which also has to do with overriding methods) occurs when new
methods are added to a superclass in a subsequent release.

For example, suppose a new version of the library introduces a
public void addContact(Contact contact, boolean unique)
method into the CM class. This method adds the contact instance to
the contact manager when unique is false. When unique is true, it
adds the contact instance only if it wasn’t previously added.

Because this method was added after the LoggingCM class was
created, LoggingCM doesn’t override the new addContact() method
with a call to Logger.log(). As a result, Contact instances passed
to the new addContact() method are not logged.

Here’s another problem: you introduce a method into the subclass
that is not also in the superclass. A new version of the superclass
presents a new method that matches the subclass method signature
and return type. Your subclass method now overrides the superclass
method and probably doesn’t fulfill the superclass method’s contract.

Java 101 primer: Composition and inheritance

9

Composition (and forwarding) to the rescue

Fortunately, you can make all of these problems disappear. Instead
of extending the superclass, create a private field in a new class,
and have this field reference an instance of the superclass. This
workaround entails forming a “has-a” relationship between the
new class and the superclass, so the technique you are using is
composition.

Additionally, you can make each of the new class’s instance
methods call the corresponding superclass method and return the
called method’s return value. You do this via the superclass instance
that was saved in the private field. This task is known as forwarding,
and the new methods are known as forwarding methods.

Listing 5 presents an improved LoggingCM class that uses
composition and forwarding to forever eliminate the fragile base
class problem and the additional problem of unanticipated method
overriding.

Listing 5. Composition and method forwarding demo

public class LoggingCM

{

 private CM cm;

 public LoggingCM(CM cm)

 {

 this.cm = cm;

 }

 public void addContact(Contact contact)

 {

 Logger.log(contact.toString());

Java 101 primer: Composition and inheritance

10

 cm.addContact(contact);

 }

 public void addContacts(Contact[] contacts)

 {

 for (int i = 0; i < contacts.length; i++)

 Logger.log(contacts[i].toString());

 cm.addContacts(contacts);

 }

}

Note that in this example the LoggingCM class doesn’t depend upon
implementation details of the CM class. You can add new methods to
CM without breaking LoggingCM.

Wrapper classes and the Decorator design pattern

Listing 5’s LoggingCM class is an example of a wrapper class,
which is a class whose instances wrap other instances. Each
LoggingCM object wraps a CM object. LoggingCM is also an
example of the Decorator design pattern.

To use the new LoggingCM class, you must first instantiate CM and
pass the resulting object as an argument to LoggingCM’s constructor.
The LoggingCM object wraps the CM object, as follows:

LoggingCM lcm = new LoggingCM(new CM());

Final notes

In this primer you’ve learned the difference between composition
and inheritance, and how to use composition to assemble
classes from other classes. Composition resolves one of the main

http://www.javaworld.com/article/2075920/core-java/decorate-your-java-code.html

Java 101 primer: Composition and inheritance

11

programming challenges associated with inheritance, which is that
it breaks encapsulation. Composition is an especially important
programming technique for situations where future developers are
unlikely to have access to or control over the superclass. The need
for it emerges especially in cases where a class package or library
has not been designed with extension in mind. Some quick F.A.Q.s
about extension will complete this primer:

 � What does ‘design and document for class extension’ mean?
Design means to provide protected methods that hook into the
class’s inner workings (to support writing efficient subclasses)
and ensure that constructors and the clone() method never call
overridable methods. Document means to clearly state the impact
of overriding methods.

 � When should I extend a class versus using a wrapper? Extend a
class when an “is-a” relationship exists between the superclass
and the subclass, and either you have control over the superclass
or the superclass has been designed and documented for class
extension. Otherwise, use a wrapper class.

 � Why shouldn’t I use wrapper classes in a callback framework?
A callback framework is an object framework where an object
passes its own reference to another object (via this), so that the
latter object can call the former’s methods at a later time. Call-
ing back to the former object’s method is known as a callback.
Because the wrapped object doesn’t know of its wrapper class,
it passes only its reference (via this); resulting callbacks don’t
involve the wrapper class’s methods.

